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Presentation Outline  

 Complexity of large-scale institutional systems

 Agent-Based Modeling (ABM) test beds for institutional design

 Example: AMES Test Bed.  An ABM test bed enabling study of 

the reliability, efficiency, and welfare implications of proposed 

or implemented designs for grid-supported centrally-managed 

wholesale electric power markets. 

 Illustrative AMES findings for U.S. markets:

− Incentives for price manipulation

− Incentives for congestion inducement
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 Modern societies depend strongly on large-scale institutions      
for production & distribution of critical goods and services       
(e.g., electric power, financial assets, health care, …)

 Institutional outcomes depend in complicated ways on

• Physical constraints restricting feasible actions

• Rules governing participation, operation & oversight

• Behavioral dispositions of participants

• Interaction patterns of participants

 To be useful and informative, institutional studies need to take 
proper account of all four elements.

Complexity of 
Large-Scale Institutional Systems
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Mathematical Modeling of Institutional Systems
Classical Mathematics vs. Agent-Based Modeling (ABM) 

◆ Classical Approach (Top Down):  Model the system by 

means of parameterized difference or differential equations

− Example:  Archimedes, a large-scale system of ordinary 
differential equations modeling pathways of disease spread 
under alternative possible health-care response systems

◆ABM Approach (Bottom Up):  Model the system as a 

collection of interacting “agents”

− Each agent is a software program encapsulating data, attributes, 
and/or methods.

− Agents can contain other agents as member data.  These “has a” 
relations among agents permit hierarchical agent constructions.
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Meaning of “Agent” in ABM

Agent =: Encapsulated bundle of data, attributes, and/or 

methods able to act within a computationally constructed world.

➢ Agents can represent:

- Individuals (consumers, traders, entrepreneurs,…)

- Social groupings (households, communities,…)

- Institutions (markets, corporations, government agencies,…)

- Biological entities (crops, livestock, forests,…)

- Physical entities (weather, landscape, electric grids,…)
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Potential Capabilities of 
Cognitive Agents (“CogAgents”) in ABM

CogAgents can exhibit: 

 Behavioral adaptation

 Goal-directed learning

 Social communication (talking with each other!)

 Endogenous formation of interaction networks

 Autonomy:
Self-activation and self-determination based on private

or protected internal data, attributes, and/or methods

(including internalized data streams from the real world),

starting from modeler-specified initial conditions. 
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UML Diagram Illustrating “is a” ↑ and “has a” ↓
Agent Relations for a Macroeconomic ABM
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ABM vs. Object-Oriented Programming (OOP)  

− Key distinction is ABM CogAgents are typically able to 
exhibit greater degrees of autonomy than OOP objects, 
since the latter have traditionally been designed as tools 
to carry out top-down modeler-specified tasks.

− OOP objects encapsulate data, attributes, and/or 
methods, but these encapsulated functionalities typically 
do not permit self-activation and local choice to achieve 
local goals.

− ABMs permit distributed agent control, not simply  
distributed agent action.
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Importance of Encapsulation

• In the real world, all calculations must be done by entities that 
are actual residents of this world. 

• ABM forces modelers to respect this constraint. 

• An intended action of an ABM agent at a specific instant is 
determined by the data, attributes, and/or methods of this 
agent at this specific instant. 

• This encapsulation of agent functionality achieves a more 
transparent and realistic representation of real-world systems 
composed of interacting distributed entities with limited 
information and computational capabilities.
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Constructive Replacement  

Encapsulation of agent functionality permits “constructive 
replacement” in the following sense:

Any agent within an ABM able to interact with other agents in 
the ABM by means of its input-output public interface can be 
replaced by a real person that uses this same public interface 
to interact with other agents in the ABM.

• Since the data, attributes, and/or methods of the original ABM agent   
can differ from the data, attributes, and/or methods of the human 
replacement, this replacement could surely affect subsequent outcomes 
for the ABM.

• The only claim here is the feasibility of physical replacement due to the 
encapsulation of functionality for agents comprising an ABM. 
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Role of Equations in ABMs 

◆ The state (data, attributes, and/or methods) of an agent in an 
ABM can include or be based on equations.

◆ The intended action of an agent in an ABM world at a given instant 
is determined by the agent’s state at this instant.  The expressed 
action of an agent within an ABM world at a given instant is 
determined by the ensemble of agent states at this instant.

◆ ABM events (changes in agent states) at a given instant are 
determined by agent interactions at this instant.

◆ Thus, ABM events can depend on equations.  However, ABM 
events cannot depend on free-floating equations that exist outside
of the states of the agents that comprise this ABM.  For example, 
ABM states cannot depend on external constraints (“sky hooks”) 
such as modeler-imposed equilibrium conditions.
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ABM and Institutional Design

Key Issues:
 Will a proposed or implemented institutional design promote

efficient, fair, and orderly social outcomes over time? 

 Will the design give rise to adverse unintended consequences?

ABM Culture-Dish Approach:

 Develop an ABM “computational laboratory” embodying the 
institutional design of interest.

 Configure and set initial conditions (agent states) for this ABM.

 Let the ABM evolve with no further external intervention, and 
observe and evaluate the resulting outcomes.
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ABM Test Bed Development via
Iterative Participatory Modeling (IPM) 

◆ Stakeholders and researchers from multiple disciplines join 

together in a repeated looping through four stages of analysis: 

1) Field work and data collection

2) Role-playing games/human-subject experiments

3) Incorporate findings into agent-based test bed 

4) Generate hypotheses through intensive       

computational experiments. 
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Project Directors: Leigh Tesfatsion (Professor of Economics, Courtesy 

Professor of Mathematics & ECpE, ISU)

Dionysios Aliprantis (Assistant Prof. of ECpE, ISU)

David Chassin (Staff Scientist, PNNL/DOE)

Research Assoc’s: Dr. Junjie Sun (Financial Economist, OCC, U.S. Treasury, Wash, D.C.)     

Dr. Hongyan Li (Consulting Eng., ABB Inc., Raleigh, NC)

Research Assistants:

Qun Zhou & Nanpeng Yu (ECpE PhD/Econ M.S. Candidates, ISU);

Abhishek Somani & Huan Zhao (Econ PhD Candidates, ISU);

Chengrui Cai (ECpE PhD Candidate, ISU).

*Supported by grants from NSF, Pacific Northwest National Laboratory (PNNL),

and the ISU Electric Power Research Center (EPRC)   

Illustrative Institutional Design Project*
Integrated Retail & Wholesale (IRW) Power System Operation

with Smart-Grid Functionality
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IRW Power System:  Basic Structure 
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IRW Power System: Dynamic Operation
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Illustrative Institutional Design Study:

Restructuring of U.S. Wholesale Power Markets

❑ In an April 2003 White Paper, the U.S. Federal Energy Regulatory 
Commission (FERC) proposed a wholesale power market design 
based on a two-settlement system: namely, centrally-managed 
day-ahead and real-time markets settled by Locational Marginal 
Pricing (LMP).

❑ The following regions serving over 60% of U.S. generation now 
operate under this FERC market design:

New York (NY-ISO), mid-Atlantic states (PJM), New England (ISO-NE), 
Midcontinent (MISO), Texas (ERCOT), Southwest (SPP), & California (CAISO)

Note: ERCOT (by deliberate within-state design) is not under FERC jurisdiction; however, 
it chose to implement the core element of the FERC market design – a two-settlement system 
-- in 2010.  Ontario (IESO), Alberta (AESO), and other Canadian provinces operate under 
variants of the FERC market design.
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North-American Regions Operating Under Variants
of the FERC Market Design as of Nov 2015 

https://www.ferc.gov/industries/electric/indus-act/rto/rto-map.asp

https://www.ferc.gov/industries/electric/indus-act/rto/rto-map.asp
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FERC Market Design:  
Key Features in Greater Detail

• Market to be managed by an Independent System Operator (ISO) 
having no ownership or financial stake in market operations.

• Concurrent daily operation of a day-ahead market plus a “real-
time market” consisting of multiple intra-day market processes.

• Transmission grid congestion managed via Locational Marginal 
Prices (LMPs), where LMP(k,T) ($/MWh) at grid bus k for operating 
period T (measured in hours) is the least cost of supplying one 
additional maintained MW of power at bus k during T

• Oversight & market power mitigation by outside agency

Has led in practice to complicated systems difficult to analyze  
by standard analytical & statistical tools !
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Example: Complex MISO Market Organization

Business Practices Manual 001-r1 (1/6/09)

LMP Two-Settlement System Core Element of the FERC Market Design  
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AMES (V2.06) Computational Test Bed 

• Development and open-source release of AMES (Agent-based

Modeling of Electricity Systems) 

• AMES =: Computational test bed incorporating core features of the 
FERC wholesale power market design

• Used to test FERC design performance for grid-supported 
wholesale power markets under systematically varied initial 
conditions.

• Used to test performance of proposed FERC design modifications.

The latest OSS-released version of AMES is V5.0 (2020).  Documentation and code for 
all versions of AMES released to date can be found at the following AMES homepage:
https://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm

https://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm
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AMES (V2.06) Architecture:  
Based on business practices manuals for MISO/ISO-NE

➢ Two-settlement system

▪ Day-ahead market (double auction, financial contracts)    

▪ Real-time market (collection of intra-day markets to ensure balancing)  

➢ Nodal settlements to handle potential transmission grid congestion

▪ Generation Companies (GenCos) & Load-Serving Entities (LSEs) located at 
user-specified transmission-grid buses

▪ Settlements determined via Locational Marginal Prices (LMPs)

▪ LMP(k,T) ($/MWh) at bus k for operating period T  =:  Least cost of 
maintaining one additional MW of power generation at bus k during T.  

➢ Independent System Operator (ISO)

▪ System reliability assessments

▪ Day-ahead scheduling via bid/offer-based 
DC optimal power flow (DC-OPF)

▪ Real-time dispatch 

➢ Traders

▪ GenCos (sellers) 

▪ LSEs (buyers)

▪ Learning capabilities
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AMES (V2.06) Architecture is Modular & Extensible 

◆Market protocols & AC transmission grid structure
― Graphical user interface (GUI) & modular class structure (Java) permit 

easy experimentation with alternative parameter settings, alternative 
market rules, and alternative forms of system constraints.

◆ Learning representations for traders

― Java Reinforcement Learning Module (JReLM) 

― “Tool-box” permitting experimentation with a wide variety

of learning methods (Reinforcement, Temporal Difference/Q-learning, …)

◆Bid/offer-based optimal power flow formulation
― Java DC Optimal Power Flow Module (DCOPFJ)

― Permits experimentation with various DC OPF formulations 

◆Output displays and dynamic test cases
― Customizable chart/table displays, inclusion of 5-bus/30-bus test cases
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Illustrative 5-Bus Test Case 
Implemented via AMES (V2.06)

Focus on Incentive Alignment: Does the market design align the 

incentives of market participants with system objectives: reliability; efficiency
(non-wastage of resources); & welfare (max total net benefit for participants)

AMES-run experiments reported in following slides:
Incentive alignment under FERC wholesale power market design is 
studied for a range of experimental treatments:

• GenCo learning capabilities [intensive parameter sweep]

• Price-sensitivity of LSE demand bids [0 to 100%] 

Hongyan Li, Junjie Sun, and Leigh Tesfatsion (2011), "Testing Institutional Arrangements via Agent-Based Modeling:   

A U.S. Electricity Market Application,” pp. 135-58 in H. Dawid and W. Semmler (Eds.), Computational Methods in 
Economic Dynamics, Dynamic Modeling and Econometrics in Economics and Finance 13, Springer-Verlag Berlin 
Heidelberg.   https://www2.econ.iastate.edu/tesfatsi/LMPCorrelationStudy.LST.pdf

https://www2.econ.iastate.edu/tesfatsi/LMPCorrelationStudy.LST.pdf
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G4

G2G1 G3

G5

Bus 1 Bus 2 Bus 3

LSE 3
Bus 4Bus 5

LSE 1 LSE 2

Five Generation Company (GenCo) suppliers G1,…,G5 

and three Load-Serving Entity (LSE) buyers LSE 1, LSE 2, LSE 3

Grid Configuration
Based on a 5-bus test-case developed by John Lally (ISO-NE) that is 
now used in many RTO/ISO business practice and training manuals

$$$250 MW Capacity

$

$ $ $$



ISO Activities During a Typical Day D
ISO market-management activities during a typical day D

include planning ahead for day D+1
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(DC-OPF) for day D+1

ISO posts optimal dispatch 
and LMP schedule for day D+1

Day-ahead settlement
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Independent System Operator (ISO) Agent 

Public Access:

// Public Methods
getWorldEventSchedule( clock time,… );
getMarketProtocols( bid/offer reporting, settlement,… );
Methods for receiving data;
Methods for retrieving stored ISO data;

Private Access:
// Private Methods

Methods for gathering, storing, posting, & sending data;
Method for solving hourly DC optimal power flow;
Methods for posting schedules and carrying out settlements;
Methods for implementing market power mitigation;

// Private Data

Historical data (e.g., cleared bids/offers, market prices,…);
Address book (communication links);



Generation Company (GenCo)
True Cost & Capacity Attributes

28
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GenCos are learning agents who report strategic
supply offers to the ISO for the Day-Ahead Market (DAM)
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GenCos use VRE-RRL Learning  
(Variant of Roth-Erev Reactive Reinforcement Learning )

 Each GenCo maintains action choice propensities, q, normalized to form choice 
probabilities, Prob, that are used to choose actions (supply offers).  A good (bad) 
reward rk resulting from an action ak increases (decreases) both qk and Probk.

Action Choice a1

Action Choice a2

Action Choice a3

Choice Propensity q1 Choice Probability Prob1

Choice Propensity q2

Choice Propensity q3

Choice Probability Prob2

Choice Probability Prob3

r

updatechoose normalize

32
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Generation Company (GenCo) Agent

Public Access:

// Public Methods 
getWorldEventSchedule( clock time,… );
getMarketProtocols( ISO market power mitigation,… );
Methods for receiving data;
Methods for retrieving GenCo data;

Private Access:
// Private Methods

Methods for gathering, storing, and sending data;
Methods for calculating own expected & actual net earnings;
Method for updating own supply offers (learning);

// Private Data
Own capacity, grid location, cost function, current wealth… ;
Data recorded about external world (prices, dispatch,…);
Address book (communication links) ;
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Load-Serving Entity (LSE) 
Hourly Demand-Bid Formulation

◆Hourly demand bid for each LSE j 

Fixed + Price-Sensitive Demand Bids:

 Fixed demand bid =: pF
Lj (MW)

 Price-sensitive demand bid 

=: Inverse demand function Fj

mapping real power pS
Lj (MW) 

over a purchase capacity interval

into a per-unit price ($/MWh) for

some designated hour H:

Fj(p
S

Lj)  =  cj - 2dj pS
Lj

0  ≤    pS
Lj ≤   SLMaxj
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R Measure for Price Sensitivity of LSE Demand Bids
Permits price sensitivity to be systematically varied across experiments
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R =:  SLMaxj /[ pF
Lj + SLMaxj ]

For LSE j in Hour H:

pFLj = Fixed demand for real power (MWs)

SLMaxj = Maximum potential price-sensitive demand (MWs)     

$/MWh

R=0.0 R=0.5 R=1.0

$/MWh $/MWh

SLMaxjSLMaxjpF
Lj pF

Lj

pLj pLj pLj

D D

D

(100% Fixed Demand) (100% Price-Sensitive Demand)
35
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Load-Serving Entity (LSE) Agent 

Public Access:

//  Public Methods 
getMarketProtocols(posting, trade, settlement);
getMarketProtocols(ISO market power mitigation);
Methods for receiving data;
Methods for retrieving LSE data;

Private Access:
// Private Methods

Methods for gathering, storing, and sending data;
Methods for calculating own expected & actual net earnings;

// Private Data
Own downstream demand, grid location, current wealth…;
Data recorded about external world (prices, dispatch,…);
Address book (communication links) ;



ISO Solves Hourly DC Optimal Power Flow (DC-OPF)
GenCos report hourly supply offers and LSEs report fixed &  price-sensitive 

hourly demand bids to ISO on day D for Day-Ahead Market (DAM)

subject to

Fixed and price-
sensitive demand 
bids for LSE j

LSE total buyer surplus (benefit)

GenCo-reported 
total avoidable 
cost

R R

RU

i

Max Max0 SLMaxj
Purchase capacity interval
constraint for LSE j

Dual variable for this 
bus-k power balance 
constraint gives the LMP 
($/MWh) for bus k

Operating capacity interval

constraint for GenCo i

PU
km = Thermal limit for branch km

ISO Choice Variables

29
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Maintained Experimental Fixed Demand Configuration for R=0.0  
LSE Total Fixed Demand at Buses 2, 3, and 4 

for Hours 1 – 24 on Operating Day D, given R=0.0
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First Experiments: Avg GenCo net earnings (Day 1000) for R=0 
under varied settings for VRE-RRL learning parameters (α, β) 

Small beta ≅ “zero-intelligence”  
budget-constrained trading.

Learning 

matters !

= Sweet- spot

region 

= Sweet-spot 

setting for learning 
parameters (α, β) 
set in subsequent 
experiments
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Lerner Index (LI): Measure of “Market Power”

A binding capacity constraint
on GenCo i can cause LIi > 0 
even if GenCo i submits a 
true supply offer reflecting its 
true marginal cost curve & 
supply-capacity conditions.
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Second Experiments:  Avg LMP with and without GenCo VRE-RRL learning 

as demand varies from R=0 (100% fixed) to R=1 (100% price sensitive)

With GenCo Learning

(Day 1000)

R R

Avg LMP (locational marginal price) Avg LI (Lerner Market Power Index)

Note: “No Learning” =: GenCos report their true marginal cost curves & capacity constraints.
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Single-Run Illustration of LMP Findings for R=0.0 (100% Fixed Demand)

W/O Gen Learning (Day 1000) With Gen Learning (Day 1000)

Learning 
has big 
effects 
on price!
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Summary of Findings from First Two Sets  Experiments

 BOTTOM LINE:

Even with 100% price-sensitive demand bids (R=1.0), prices (LMPs) 

are much higher under GenCo VRE-RRL learning due to GenCo 
strategic supply offers, primarily under-reported supply capacities.

 NEEDED:

Countervailing power =  Price-sensitive LSE demand bidding plus
more numerous GenCo suppliers competing for profits to support 
more competitive pricing at wholesale.

 POSSIBLE MEANS:

Integrated retail and wholesale (IRW) operations that permit:       
(i) more active participation of distribution-level power resources 
in wholesale power markets; and (ii) increased opportunities for 
distribution-level consumers with price-sensitive demands to 
preferentially select their LSE intermediary suppliers. 
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Third Set of Experiments: 
Net surplus extraction by ISOs in day-ahead 
energy markets under Locational Marginal 
Pricing (LMP)

Day-ahead market activities
on a typical operating day D:

Hongyan Li and Leigh Tesfatsion (2011), "ISO Net Surplus Collection and Allocation in Wholesale Power Markets 
Under Locational Marginal Pricing, IEEE Transactions on Power Systems, Vol. 26, Issue 2, 2011, 627-641. 

https://www2.econ.iastate.edu/tesfatsi/ISONetSurplus.WP09015.pdf

https://www2.econ.iastate.edu/tesfatsi/ISONetSurplus.WP09015.pdf
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ISO goal is to maximize Total Net Surplus (TNS) 
subject to system constraints:  A Two-Bus Example  

(Adapted from Harold Salazar, ISU ECpE M.S. Thesis, 2008)

Given the line capacity limit M, the cleared LSE load 
at bus 2 = pF

L.  The LSE receives price r ($/MWh) for 
the resale of pF

L at the retail level. 
M units of pF

L are supplied by GenCo G1 at bus 1 
at price LMP1 ($/MWh);  the line capacity limit M 
prevents G1 from supplying any additional units.   
Remaining [pF

L – M] units are supplied by GenCo 2 
at bus 2 at the higher price LMP2 ($/MWh).  The 
LSE at bus 2 pays LMP2 for each unit of pF

L.  
As a result of these transactions, the ISO collects 

“ISO Net Surplus” defined as follows:

ISO Net Surplus

=:  [ LSE Payments  - GenCo Revenues ]

=     LMP2 x pF
L – M x LMP1 – [pF

L – M] x LMP2

=    M x [ LMP2 – LMP1 ] = [Shaded Figure Area]

(C1-capacity constrained)

C1
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Two-Bus Example  …  Continued

ISO Net Surplus:

Area INS =:  M x [LMP2 – LMP1]

GenCo Net Surplus:
Area S1  +  Area S2

LSE Net Surplus:
Area B  =:  pF

L x  [r – LMP2] 

Total Net Surplus:

TNS = [INS + S1 + S2 + B]

ISO Optimization Objective:   
Maximize TNS subject to
system  constraints.

(C1-capacity constrained)

C1



Third Experiments:  5-Bus Test Case Results Without GenCo VRE-RRL Learning 

Mean LSE, GenCo, and ISO net surplus extractions on day 1000 

as LSE demand varies from R=0.0 (100% fixed) to R=1.0 (100% price sensitive)
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R Value

$



Third Experiments:  5-Bus Test Case Results With GenCo VRE-RRL Learning   

Mean LSE, GenCo, and ISO net surplus extractions on Day 1000 
as LSE demand varies from R=0.0 (100% fixed) to R=1.0 (100% price sensitive)
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$
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Third Experiments:  Summary of ISO Net Surplus Findings  

 ISO net surplus extractions not well aligned with market 
efficiency

 Treatments resulting in greater GenCo economic capacity 
withholding (hence higher & more volatile LMPs) also result    
in greater ISO & GenCo net surplus

 ISO net surplus collections should be allocated ex ante for 
remedy of structural/behavioral problems that encourage 
GenCo economic capacity withholding.

 ISO net surplus collections should not be used ex post for LMP 
payment offsets and LMP risk hedge support (current practice)
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ISO Net Surplus Extraction:  Empirical Comparisons

 From PJM 2008 report:
ISO net surplus from day-ahead market: $2.66 billion

 From MISO 2008 report:
ISO net surplus from day-ahead market: $500 million

 From CAISO 2008 report:
ISO net surplus from day-ahead inter-zonal congestion charges:  
$176 million

 From ISO-NE 2008 report:
Combined ISO net surplus for real-time and day-ahead markets:  

$121 million



49

Conclusions

 Restructured wholesale power markets are complex large-scale institutions 

encompassing physical constraints, administered rules of operation, and 

strategic human participants.

 Agent-based test beds permit the systematic dynamic study of such 

institutions through intensive computational experiments.

➢ For increased empirical validity, test beds should be iteratively developed  

with ongoing input from actual market participants. 

➢ To increase usefulness for research/teaching/training and to aid knowledge 

accumulation, test beds should be open source.
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On-Line Resources

❑ Presentation Slides
https://www2.econ.iastate.edu/tesfatsi/TestInstViaABM.Waterloo2010.pdf

❑ Agent-Based Computational Economics Homepage
https://www2.econ.iastate.edu/tesfatsi/ace.htm

❑ AMES Test Bed Homepage (Code/Manual/Publications)

https://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm

❑ Agent-Based Electricity Market Research
https://www2.econ.iastate.edu/tesfatsi/aelectric.htm

❑ Other Highly Active ABM Social Science Research
https://www2.econ.iastate.edu/tesfatsi/aapplic.htm

https://www2.econ.iastate.edu/tesfatsi/TestInstViaABM.Waterloo2010.pdf
https://www2.econ.iastate.edu/tesfatsi/ace.htm
https://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm
https://www2.econ.iastate.edu/tesfatsi/aelectric.htm
https://www2.econ.iastate.edu/tesfatsi/aapplic.htm

