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ABSTRACT

An expected utility model of individual choice is formulated
which allows the decision maker to specify his available actions
in the form of "controls'" (partial contingency plans) and to
simultaneously choose goals and controls in end-mean pairs. It
is shown that the Savage expected utility model, the Marschak-
Radner team model, the Bayesian statistical decision model, and
the standard optimal control model can be viewed as special cases

of this "goal-control expected utility model."



1. TINTRODUCTION

The formal description of decision problems under uncer-
tainty in terms of "states," 'consequences," and "acts" (complete
contingency plans), functionally mapping states into consequences,
is now common in economics. Yet, as has often been noted (e.g.,
see J. H. Dréze [2]), the descriptive realism of this decision
framework is somewhat limited. Most importantly, in actual
problem contexts the specification of available actions in the
form of complete contingency plans is often not feasible. In-
formation may be incomplete; alternatively, the required calcu-
lations may be too costly. Second, the implicit requirement
that the occurrence of a state should be unaffected by the
decision maker's choice of act can greatly complicate the formal
statement of even the simplest problems.

In this paper an alternative decision framework is presented
within which these two difficulties do not arise. The decision
maker is allowed to specify his available actions ("controls')
in the form of partial contingency plans. His choice set is
assumed to be a collection of end-mean, candidate goal=-control
pairs ('"policies"). The "candidate-goals" are operationally
interpreted as potential objectives whose realization the decision
maker can attempt to achieve by appropriate choice of control;
for example, profit, sales, or market share aspiration levels.
States and consequences are subsumed into '"'state flows," over

which policy-conditioned preference and probability orders are



both defined. Thus, in a manner to be made precise below, state
flows need not be defined independently of the decision maker's
choice of policy. An expected utility representation is obtained
for the decision maker's preferences among policies.

A number of previous researchers have explicitly introduced
goals into their models (for example, R. M. Cyert and J. G. March
[1], H. Simon [107, and J. Tinbergen [127]). One rationale for
analytically distinguishing goals from controls is that goals
and controls play distinct strategic roles in many decision
problems. Whereas controls, by definition, can be realized at
will by the decision maker, rarely will he have such power over
his problem environment that he can ensure the attainment of a
desired goal. For example, he may need the cooperation of other
persons who are not entirely under his control. The amount of
cooperation he receives, and hence also the probability of
relevant future events, may vary depending on which goal he
specifies. Thus goal specification may have strategic importance
for extending control over future events., A second rationale
for distinguishing goals from controls is that goals are often
important for the feedback evaluation of chosen policies; i.e.,
the utility (cost) of a chosen policy may be a function of the
"distance' between the realized outcome and the desired outcome
(goal).

An interesting complementary relationship exists between the

""goal-control expected utility model" presented in this paper and



the "satisficing' approach to decision making first investigated
by H. Simon (see [107]; also R. Radner and M. Rothschild [7]).

The goal-control expected utility model seems to be particularly
appropriate for the initial stages of a decision problem when
relatively few details are available and the basic questions are:
what should be our goal; what should be our overall line of
attack (control). Once the general goal-control policy has

been selected, satisficing search methods can be used by those
individuals who are charged with implementing the policy and

who therefore will need to make numerous sub-decisions concerning
details not provided for in the policy. The specified goal plays
the role of Simon's "aspiration level" in terms of which the
satisficing policy implementers evaluate the adequacy of their
sub-decisions.

The organization of this paper is as follows. The goal-
control model primitives are presented and discussed in section
2. In section 3 it is shown that the goal-control primitive sets
can be interpreted in terms of certain primitive sets used by
L. Savage [9]. An expected utility representation for the goal-
control model is presented in section 4. (An axiomatization
for this representation is established in [11]}.) In section 5
it is shown that the Savage expected utility model, the Marschak-
Radner team model, the Bayesian statistical decision model, and
the standard optimal control model can be viewed as special

cases of the goal-control model with expected utility



representation as in section 4. For example, the Savage
expected utility model can be identified with a goal-control
expected utility model in which the control set is Savage's
set of acts and the collection of candidate goals is a trivial
one~element set. Two examples illustrating the goal-control

expected utility model are given in section 6.



2. PRIMITIVES FOR THE GOAL-CONTROL MODEL

Let G = {g, ...} be a set of candidate goals, and for each

g €G let Ag = {xg, ...} be a set of controls. The primitives

for the goal-control model ('gc-model') are then characterized

by a vector
<o, » >, {<q >e>|e ¢ 8}, {<e&g,, 2e>|e e 0}

where

® =1{6, ...} = Us cc {(g, )\g) l)\g € Ag}

is the policy choice set consisting of

candidate goal-control pairs (policies);

> (policy preference order) is a weak order?!

on @ ;
and for each policy 6 € @,
QG = {we, ...} 1is a nonempty set of state flows
associated with the policy 6

P (b-conditioned preference order) is a weak

order on Qe;
e = {Ee, ...} 1is an algebra® of subsets of Qe
whose elements E9 will be called event

flows associated with the policy 6

z (g-conditioned probability order) is a

weak order on Se .



Remark. State-consequence-act models generally assume the
existence of only one primitive order, a preference order over
acts, and hence obtain a simpler statement for their primitives.
Nevertheless, subsequent axiomatizations to justify an expected
utility representation for the preference order then invariably
impose strong nonnecessary restrictions on the primitives (e.g.,
Savage's reliance on constant acts). In contrast, assuming a
certain finiteness restriction on the state flow sets Qe ,
necessary and sufficient conditions can be given which justify an

expected utility representation for the gc-model policy prefer-

ence order > (see section 4 below).

The controls may be operationally interpreted as possibly
conditioned sequences of actions (i.e., partial contingency plans)
entirely under the control of the decision maker at the time of
his choice. The candidate goals g € G may be operationally
interpreted as potential objectives (e.g., production targets)
whose rwalization the decision maker can attempt to achieve
through appropriate choice of a control. The grouping of the
controls into sets {Ag!g € G} reflects the possibility that
different sets of controls may be relevant for different goals;
e.g., for a decision maker in San Francisco, the control "travel
by bus'" is suitable for the goal '"vacation in Los Angeles' but
not for the goal '"vacation in Hawaii." A control Xg € Ag may
or may not provide for the communication of the goal g to

other persons in the decision maker's problem environment.



The weak order » on ® can be operationally interpreted

4

as a preference order as follows. For all 6’, 8 €0,

8’ » 8”7 @ the choice of policy 6’ is at
least as desirable to the decision

maker as the choice of policy 8’7 .

The decision maker is assumed to choose a policy (candidate goal-
control pair) 6’ € ® which is optimal in the sense that 6’ > ¢
for all © € ® . Throughout this paper we use ''choose policy

8 = (g, xg)" and "implement control xg with g as the objective'"
interchangeably.

For each 6 € ®, the set Qe of state flows Wy can be
interpreted as the decision maker's answer to the following
question: "If I choose policy 6, what distinct situations
(i.e., state flows Wy ) might obtain?" The state flows may
include references to past, present, and future happenings. In
order for subsequent probability assessments to be realistically
feasible, the state flow sets should include the decision maker's
background information concerning the problem at hand.

The ©6-conditioned preference orders >e can be inter-
preted as follows. For all w, w’ € Qe , 8 €@,

w >e w’ e the realization of w is at least as
desirable to the decision maker as the

realization of ®”, given the event

"decision maker chooses 8."



Similarly, the ©-conditioned probability orders Ze can be

interpreted as follows. For all E, E’ e 86, 0@,

E 26 E’ @ in the judgment of the decision maker,
the realization of E 1is at least as
likely as the realization of E’,

given the event "decision maker chooses

0."

A state flow w may be relevant for the decision maker's
problem under distinct potential policy choices; e.g.,
w e Qe n QO' for some 6, 6’ € ®, Similarly, the algebras
{Se} may overlap. Given state flows w, w’ e Qe N Qe, for
some 6, 6° ¢ ®, it may hold that w >e w’ whereas w’ >e'w.
Verbally, the relative utility of the state flows w and w’
may depend on which conditioning event the decision maker is
considering, '"decision maker chooses 8" or "decision maker
chooses 67." Similarly for the relative likelihood of event
flows E, E'eeenee,, 6, 6" €@.

Examples illustrating these interpretations are given in

section 6.



3. INTERPRETATION OF PRIMITIVE SETS IN
TERMS OF A MODEL USED BY SAVAGE

Although best known for his expected utility axiomatization
of a complete contingency plan model in the tradition of Ramsey
and Von Neumann-Morgenstern, Savage was also fully aware of the
practical need for decision frameworks with more limited in-
formation requirements. In a rarely cited section of his famous
"Foundations of Statisties' [9, page 827 he constructs an
interesting limited information decision framework (''small world
model") in terms of the primitive sets used in his basic, complete
contingency plan model. As Savage cautions, however, the small
world model seems to take this basic model "much too seriously;"
e.g., consequences in the small world model are defined to be
acts (complete contingency plans) from the basic model.

In contrast to Savage's small world model primitives, the
gc-model primitives do not rely on the existence of a complete
contingency plan model. Nevertheless, as is demonstrated below,
the gc-model primitive sets can also be given an interpretation
in terms of the primitive sets used in Savage's basic model.
This interpretation helps to clarify the relationship between
the gc-model primitive sets and the state-consequence-act
primitive sets appearing in more traditional models.

Assume a decision maker is faced with a certain problem

at time t° . Following Savage [97, define
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S = exhaustive set of possible descriptions
("states") of the world at time to,
including all aspects relevant for the
problem at hand;

C = set of all future life histories of the
decision maker ("consequences');

F = set of all functions (Yacts") £:S —-C.

For any set M, let "ZM" denote the set of all subsets
of M. Then gc-model primitive sets for the decision maker's
problem can be given in terms of (ZC s ZF, ZS) , as indicated

below:

G ¢ ZC (candidate goal set);
A < 2F (control set associated with g),

for each g € G ;

®

Ug EG{(g’ A) lk € Ag} (policy choice set);

and for each policy 6 € @,

Q S. XC (state flow set associated with 8) ,

] e ¢]

where Se < ZS is a partition of S,

and Ce c ZC is a partition of C;

66 = ?e X ae (algebra of event flows associated
with 8) , where %e is an algebra
of subsets of Se and Oe is an

algebra of subsets Ce .
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In other words, a candidate goal can be interpreted as a
subset of Savage's consequence set C, and a control can be
interpreted as a subset of Savage's set F of acts. For example,
a candidate goal for player one in a chess game might be
g : (player one checkmates player two's king), which can be
identified with the set of all Savage consequences(future life
histories of player one) in which the event g obtains. A
control for player one might be A : (open by moving king's pawn
two spaces), which can be identified with the set of all Savage
acts (complete contingency plans) available to player one for
which the opening move in the chess game at hand is specified to
be A . Similarly, state and event flows can be interpreted as
subsets of S X C and ZS X 2C . A detailed example illustrating
this interpretation is given in section 6.2.

The relationship between the Savage model and the gc-model

will be further discussed (section 5.1) after the expected utility

representation for the gc-model has been presented.
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4. EXPECTED UTILITY REPRESENTATION

In a separate paper [117] conditions are given which ensure
that the gc-model has an expected utility representation in the
following sense: To each policy 6 € ® there corresponds a
finitely additive probability measure c(-le) :66 - [o, 1]

satisfying

o(E|e) 2 c(E’|e) ®E 2 E’, (1)

8

for all E, E €&, , and a utility function u(-ie) :Qe - R

8

satisfying

u(w|8) = u(w’]e) & w>, w’, (2)

e

for all w, w’ & Qe s such that

eru(wle) o(dw|6) = er’u(mle') o(dw|e) @8 >8",  (3)

for all 6, 6° € ®. Given that each state flow set Qe is

Q
finite, with 89 = 2 6 » the remaining conditions are shown to

be necessary and sufficient for the desired representation (1),
(2), and (3).

This expected utility representation for the policy
preference order » can be interpreted as follows. To each
state flow w’ € Qe, , 67 € ®, the decision maker assigns a
utility number u(w’|6’) representing the desirability of {w’)}

obtaining, conditioned on the event "decision maker chooses 87,"
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and a probability number c({w'}[@') representing the likelihood
of {w’} obtaining, conditioned on the event '"decision maker
/n

chooses @ He then calculates the expected utility

J'Q u(w| 8) o (dw| 8)
8

corresponding to each choice of policy @ € @, and chooses a

policy which yields maximum expected utility.

Definition. A gc-model with numerical representation as

in (1), (2), and (3) will be referred to as a gc-expected

utility model, characterized by a vector

©, {u(-{8):0,~r[6 € @}, {o(-]6) 164 = [0, 1]]6 € o},

with objective function U:® - R given by

U@) = [, u(w|8)o(dwe), ec@
8

For each policy 6 € ®, the function u(-|e): Qe - R will be

called the utility function associated with 8 and the

probability measure c('|e) :6e - [0, 11 will be called the

probability measure associated with 0 .

Two distinctive features of the gc-expected utility model
will now be discussed: namely, utility and probability are both
conditioned on the chosen policy; and utility and probability
are both defined over (subsets of) state flows rather than
having utility defined over a consequence set and probability

defined over subsets of a state set. We begin by giving a
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brief historical perspective,.

Nearly all expected utility models for decision making
under uncertainty which do not presuppose the existence of
numerical probability measures have as primitives a set S of
"states'" whose subsets have probability but no utility, a set
C of "consequences'" which have utility, and a set F of "acts,"
ordered in preference by the decision maker, which functionally
relate the states to the consequences. The existence of a
utility function over comsequences and a probability measure
over states are subsequently derived from axioms. In order
for the (unconditional) probability measure over states to be
well defined, the realization of a state cannot depend on the
decision maker's choice of act. Many decision theorists have
noted that in practice it is difficult to specify states in
such a way that they are utility-free; and the required inde-
pendence condition between states and acts is often awkward
to achieve.

In order to avoid these two difficulties, Krantz, Luce
et. al. [4, Chapter 8] replace each original act f € F by a

set of conditional acts {fA tA -~ CIA € s}, where f AcSS,

A b

"act f conditional on A ." The utility

is intexrpreted as
representation they subsequently axiomatize for their condi-

tional utility model is of the form:
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> .
fA > gy @ u(fA) z u(gB),
if ANB=¢, then

u(f, Ugp) = u(f,) Prob(A|AUB) + u(gy) Prob(B|AUB) .

In a radically different approach, partly in response to the
same difficulties, Jeffrey [3] takes as his only primitive set
a certain set M of propositions, and he replaces the concept
of an act by the concept of a '"proposition made true.'" His
subsequent utility (desirability) representation over the dis-
junction aVb of propositions a and b in M is of the

form: if Prob(aAb) = 0 and Prob(aVb) >0, then

u(a vb) = [u(a) Prob(a) + u(b) Prob(b)]/ [Prob(a) + Prob(b)] .

The gc-expected utility model uses to some extent both
the conditional approach of Krantz et. al. and the homogeneous
approach of Jeffrey. The conditioning of the state flow sats
on the policy choice of the decision maker simply reflects the
realistic consideration that different state flows may be relevant
for different policy choices; it is not an essential feature of
the gc-model. 1In contrast, the conditioning of the utility
functions {u(‘le): Qe - R|9 € ®} and the probability measures
{0(°|e) 18y - (o, 1]|e € ®} on the chosen policy is essential
in order to avoid the type of independence difficulties mentioned

above which arise in the application of more traditional state-
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consequence-act models. Without such a conditioning it would not
be legitimate for the decision maker to assign utility and
probability to state flows prior to his choice of policy. (As
will be discussed in section 6 in the context of an example, a
state flow may have a different utility and a different
probability depending on which policy, i.e., candidate goal-
control pair, is chosen. 1In addition, controls and candidate
goals appear to be independently significant in this conditioning.)

By subsuming states and consequences into state flows and
having utility defined over state flow sets, the gc-expected
utility model also avoids the second difficulty mentioned above
concerning the specification in practice of utility-free states.
Moreover, as in Jeffrey's model, the specification of a functional
relationship between states and consequences is not required.

On the other hand, the elements of choice in the gc-model
are not in conditional form, as in the Krantz et. al. model;
nor are they completely subsumed into a single primitive set,
as in the Jeffrey model. Consequently, whereas the Krantz et. al.
and Jeffrey utility representations are strikingly different from
the more traditional expected utility representation expressed in
terms of states, consequences, and acts, the gc-model primitives
support an expected utility representation which generalizes

this more traditional representation (see section 5).
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5. COMPARISON WITH OTHER MODELS

In section 3 an interpretation was given for the primitive
sets of the gc-model in terms of the primitive sets used by
Savage [97]. By assuming various other interpretations for the
gc-model primitive sets, it will be shown below that the Savage
expected utility model, the Marschak-Radner team model, the
Bayesian statistical decision model, and the standard,
continuous time, fixed terminal time control model can be
viewed as special cases of the gc-expected utility model.

The fact that these four models can be placed in one
general framework reveals that they are not as disparate as
their terminology and notation might indicate. In order to
facilitate comparisons, the four models will be discussed in
terms of their gc-expected utility representations (given
below). In each of the models the decision maker is assumed to
choose a control in order to maximize expected utility. In the
statistical decision model the controls are "experiment'-function
pairs. In each of the other models the controls are functions.
Explicitly specified goals do not play an essential role in
the first three models, whereas in the control model a fixed
target trajectory is used as an "aspiration level" in terms of
which the effectiveness of various controls is evaluated. Yet,
as is clear from their gc-expected utility representations,
each of the four models could explicitly handle endogenously

determined goals without any drastic change in basic framework.
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On the other hand, the four models differ in their use of
conditioning. 1In both the Savage and the team models, all state
flow sets {Qele € ®} are identical and all probability measures
{o(-le) :69 - [o, 1]|e € ) are identical. 1In contrast, the
state flow sets in the statistical decision model are non-
trivially conditioned on the control, and the state flow sets
in the control model are nontrivially conditioned on both
control and goal. The probability measures
{c(.le) :Se - (o, 1]|8 € ®} 1in the statistical decision model
are nontrivially conditioned on the control; the probability
measures {c(-le) PEy Lo, 1]|G € ®} in the deterministic
control model are trivial. The utility functions
{u(-le) :Qe - Rle € ©} in all four models are nontrivially
conditioned on the control (those in the control model are also
nontrivially conditioned on the goal).

Another characteristic distinguishing the basic frameworks
of these four models is the implicit structural relationship
between the control set and the state flow sets. For example,
in the Savage and the team models the controls are functions on
the (single) state flow set. In the control model the controls
are defined independently of the state flow sets. Intuitively,
the state flows in the Savage and team models are pure "states"
whereas the state flows in the control model, aside from

boundary conditions, are pure 'consequences."
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5.1 THE SAVAGE EXPECTED UTILITY MODEL AND THE GC-EXPECTED
UTILITY MODEL COMPARED. It will first be shown that the
Savage expected utility model can be identified with a par-
ticular gc-expected utility model. Conversely, it will then
be shown that the gc-~expected utility model can be identified
with a particular Savage expected utility model with primitives

defined in an unusual, interesting manner.® As in section 3,

let

S = set of states;
C = set of consequences;
F = set of acts; i.e., all functions £:5 - C.

Under the Savage axioms, there exists a weak (preference)
order (F, 2), a utility function &:C - R, and a

probability measure P:2S - [0, 1] such that for all f, g € F,

4(f(s)) P(ds) =2 4(g(s)) P(ds) ® £ 2 g
S S

Set
¢’ = {C}, a trivial one-element candidate
goal set;
A'C =F, the control set associated with
the candidate goal C;
® = {c} xF={(@, £), . ..}, the policy choice set;
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and for each policy (C, f) € ®,
Q(C,f) = 8, the set of state flows
associated with (C, f) ;
8EC,f) = 27, the algebra of event flows
associated with (C, f) ;
u’(-|(c, £))= G(£C+)):Qf - R, the utility
(C,£)
function associated with (C, f) ;
c'(‘I(C, £))= P(-):&EC £) -~ [0, 1] the probability
b
measure associated with (C, f) .
Then for each policy (C, f) € ®”,

for gy @l £ "l £) = [Ee) pes)
c,f

Hence the Savage expected utility model can be identified with

the gc-expected utility model
@, {u’(-|e):né ~R[o € @}, {o'C-|0):e; ~ [0, 116 e 0D
with objective function U’:®’ = R given by

U, £) = [o. u’](C, B) o’(du|(c, £)), (C, £) €0 .
()

Conversely, let
@, {u(-|8):q, = R|o € @}, {o-]6):e, = [0, 1]]e € ©}) be a

given gc-expected utility model. Let
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(@}
|

= {(Qgs €5, oC-[0)]6 € @}, a set of
consequences;

S’ = {s*}, a one-element set of states,
where S™ is the function mapping
® into C’ given by S*(9) = (Qe, 66 0('|9)),
b € B;

F'=0, a set of acts, where for each 6 € F’,
8:5" = C’ 1is given by B8(S*) = 5%(8) .

i:C”" % R, a utility function given by
’G(Qe, €g> 9C|0)) = eru(wle) o(dw|e) ;

p:25 [0, 1], a probability measure given

trivially by P({S*}) =1 .

Then for each act 6 € F’,
Jg» G(e(s)) P(as) = jﬂeu<w|9) o(dw|e) .

Hence the gc-expected utility model can be identified with
the Savage expected utility model (C’, S’, F’) with objective

function U”:F’ = R given by

u’(e) = j;, (6(s)) P(ds), 6 e F* .

5.2 THE TEAM MODEL AND THE GC-EXPECTED UTILITY MODEL
COMPARED., Intuitively, a team is an organization in which there
is a single payoff function reflecting the common preferences of
the members. The formal team model presented below is taken

from Radner [8]. It will be shown that this team model can be
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identified with a particular gc-expected utility model. The

components of the team model are as follows.

S = {w, ...} = set of alternative states of
the environment;
C = {c, ...} = set of alternative consequences
A = {a, ...} = set of alternative acts
available to the team, where
every act a in A is a
function from S to C;
N=1{1, ..., M}, the set of team members;

Y=1IL_, Y., where Y, = set of alternative
=1 i i
signals that i € N can

receive as information;

&'
|

M, n% ...} = set of available information
structures, where each mn e |y
is a vector (nl, . qn) with
ni:S - Yi an information
function for i € N

D= H?_l D, , where Di is a set of alternative

decisions that i € N can take;

®
il

{6, 87, ...} the set of decision functions

available to the team, where
each 6 € § is a vector
(61, cees 6M) , with Gi:Yi - Di

the decision function for i ;
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p:S XD =~ C, a given team outcome function;

and for each NMely and 6 € 9,

aécn:S = C given by aaon(w) = p(w, 8om(w)) ,
the act determined by m and §

(given p) .
Also it is assumed there exists

4:C R, a unique utility function reflecting

the (identical) preferences of the
team members;

¢:ZS - [0, 17 a probability function;

(A, =) a weak preference ordering expressing
the preference ordering of the team

(as a unit) over the set of acts.

Finally, it is assumed that V a, a’ € A,

az2a’e J‘S t(a(s)) d¢ (s) = fs d(a’(s)) do (s)

Set
¢’ = {c}, a trivial one-element candidate
goal set;
A = {6emis »Dl6 e 9, meyl = {a, ...},

the control set associated with

the candidate goal C ;

(€3]
~
~

0

{c} x AZ; = {(C, A), ...}, the policy

choice set;
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and for each policy (C, A) € @7,

V¥ 4

CRVN

S, the set of state flows
associated with (C, A) ;
Ezé A)= ZS, the algebra of event flows
J

associated with (C, A\) ;

r?

©,n) -

the utility function associated

u’’(-] (€, A)) = Fep(e, A()) : 0 R
with (C, \) ;

o’’C¢:[(c, 1)) =8() ey = [0, 1] the
probability measure associated

with (C, A) .

Then for all policies (C, A) € @7,

sou (] €,0)) o7 (du] (C, 1)) = [ G(a, (W) @(dw) ,
fn(c,x) | Jg A

where ax(') = p(*, A(*)) 1is the act determined by A (given p) .
The team model can therefore be identified with the gc-

expected utility model

Y4

@, {u”’C¢le) : Y ~rle € 077}, {o77(-]®) ey =00, 1]le e @’}

with objective function U’ :®°" = R given by

L G e VLI C LR S DI C I GRS DGR R
(C,1)
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5.3 THE BAYESIAN STATISTICAL DECISION MODEL AND THE
GC-EXPECTED UTILITY MODEL COMPARED. The Bayesian statistical
decision model presented below is taken from D. V., Lindley
[5, pages 1 -207. It will be shown that this model can be
identified with a particular gc-expected utility model.

Let E = {(Xe, @, {pC:]¥, e 1T, o, 11|y e @e})le € E}

be a collection of experiments, where for each e € E

Xe is a sample space;

T is a o-algebra of X ;
e e

@e is a parameter space;

{p ('Iw’ e) :Te - [o, 1]|¢ € @e} is a set

of probability measures.

Let D be a decision space, and for each e € E let

£é be a o-algebra of @e;
p(~|e):£e - [0, 1] be a probability

measure (prior distribution);

Ae = {6e’ ...} be the set of all functions

(decision functions) taking X into D ;
e

4: ({e} x b, XX, X 8) =R autility function.
Then the Bayesian statistical decision problem is to choose

*  ak
(e™, 6%) e Us e ({e} x Ae) so that

Ix_,xa GCe* 8%G), x, ¥) P(dx, difex) )
e a¥%*

= max j'x [rg:; JP§ e, 8(x), x, §) p(dy|x, e)]p(dXIe) )
e€E e e e
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where P(dx, dw‘e) = p(dwlx, e) p(dxle) = p(dxlw, e) p(dwle) s
and p(xle) = I@ p(x|¢, e) P(Wle) dy .

Assume thatefor each e € E, u(e, +, -, -):(Ae X Xe X @e)
= R 1is dominated by a function in Ll(P(-Ie)) (e.g.,
ti(e, *, *, *) 1is bounded). Then by Lebesgue's Dominated

Convergence Theorem, for every e € E,

Ix [§:§ f@ e, 8(x), x, ¥) p(dy|x, e)] p(dx|e) (5)
e e e

= [y s Tles 860, x, ) P(ax, dyle) .
e e e

Set
G* = {R}, a trivial one-element candidate
goal set;
Q=%@de%%ﬂwﬁhnj,tm

control set associated with the
candidate goal R ;

%

{R} x A§ = {(R, e, 8)|6 ¢ Ays e € E} = {e8, ...},

the policy choice set;

and for each policy (R, e, §) € ®*,

L] = =
Ur,e.6) = %o X & {(xe, V) ...}, the
state flow set associated with
R, e, 8) ;
* -
8(R,e,6) = Te X £e » the algebra of event

flows associated with (R, e, §) ;
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u*('l(R, e, 6)):Q?R e,8) = R the utility
I+

function associated with

(R, e, 8) , given by
u*((x, | R, e, 6))

ﬁ(e’ 6(X)’ X, ‘b), (X, ‘V) € Q?R,e,ﬁ) o

]

ox(*| (R, e, 8))

P(-Ie):G?R,e,a) - [0, 1]

the probability :reasure associated

with (R, e, 8) .

Then, using (5),

max [ _ju*(w|8) o*(dw|6) = max G(e, 8(x), x, §) P(dx, dy|e)
95®*'f09 (8,6)5A§ IXeXQe l

= max [ [g“:g‘ 5 3(es 6G), %, ¥) pay|x, e)] p(dx|e) . (6)
e e e e

Comparing (4) and (6), the Bayesian statistical decision model

can be identified with the gc-expected utility model
©*, {ux(-|0):08 ~ R|o € @}, {ox(-|e):ex ~ [0, 116 € &*])

with objective function U*:0% - R given by

U*(R, e, 6) =IQ? u*(w| (R, e, §)) o*(dw| (R, e, 6)), (R, e, §) €@ .
R’e’6>
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5.4  THE STANDARD OPTIMAL CONTROL MODEL AND THE GC-
EXPECTED UTILITY MODEL COMPARED. It will be shown that the
standard, continuous time, fixed terminal time optimal control
model can be identified with a particular gc-expected utility
model. (Although conceptually and notationally more difficult
to present, the stochastic optimal control model could be
similarly treated.)

Let a dynamical system be described by a system of ordinary

differential equations
dw(t)/dt = h(w(t), (), t € [0, T); (7
w(0) = w_;

g(w(T)) = 0 e E"

where

A(E) € EP  is the control input at time ¢t ;

wlt) € E" is the state of the system at

time ¢t ;

n . . s e s
W, € E is a fixed initial state;

n m . . .
g:E =2 E ,m=<n, 1is a terminal constraint

function;

T is a fixed terminal time.

. n . .
The state function w:[0, T] = E 1is often interpreted as
. - — n .
a difference w’ - w, where w:[0, T]-2E is some exogenously

given target trajectory. Without loss of generality it is
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usually assumed that ® is the zero function 5:[0, T]-*{O} c g"

Let B c EP , and let F:E" x EP -« R be a cost function.

Then the standard, continuous time, fixed terminal time optimal
control problem in terms of the system (7) and the cost function

f 1is as follows (cf L. S. Pontryagin [67):

Find a piecewise continuous control
A°:[0, T1 = B < EP for the system (7)

which minimizes
L[] r —— T A
Jweys 5 0 = [ £y - B(®), () de .

The control model presented above can be identified with a

gc-expected utility model as follows. Set

¢* = {0:[0, T] - {0} € E™}, a one-element
candidate goal set consisting of

the zero function;

Aff = {A:[0, T] - B|x piecewise continuous},
° the control set associated with the
candidate goal 5;
e** = ({0} «x A";_)*) = {@, \), ...}, the

policy choice set;

and for each policy (0, ") e @*%,

Fodke
O,

Q = {mklz[o, T] - Enlwkl satisfies (7)
with control )A°}, a one-element

state flow set;
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6*? = {o, Q*f }, the algebra of
(0,0 %) (0,2 7) _ ,
event flows associated with (0, 1) ;
u™ (-] (0, A7) :** _ ~R, the utility
(0,1 %)

function associated with (0, A,
given by u**(uk,l(ﬁ, A7)
=-J(UJ>\1, }\’s 6);

c**('|(5, L)) et - [0, 1], the (trivial)
0,1 ")
probability measure associated with

(0, »"), given by

@ @, =1 .
GRS

Then for each policy (0, A) ¢ ®**,

[ 9@ @, 1)) 0 (du] @B, 1)) = - I(w, A, D)
(0,2)

Hence the control model presented above can be identified with

the gc-expected utility model
@, {u*([0):0% — R0 € &%}, {o**(-[0):e% = [0, 1]]0 ¢ &**})
with objective function U¥**:@%* = R given by

u@, 2 = S 0¥ @| B, 1)) o**(aw| B, 1)) 5 B, M) € &FF
(0,0)
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6. EXAMPLES

The Construction Firm Example and the Egg Example given
below are both formulated in terms of the goal-control expected
utility model (see section 4).

The Construction Firm Example (adapted from a case study)
illustrates the following three points. First, certain decisions
can be given an expected utility rationalization even though the
decision maker specifies his available acts in the form of partial
rather than complete contingency plans. Second, the choice of
an end-mean goal-control pair arises naturally in many decision
problems. Third, both choice of goal and choice of control are
operationally significant in that each can affect the decision
maker's probability and utility judgments concerning future
events.

The principal purpose of the Egg Example (a modified version
of an egg example by Savage) is to illustrate how the goal-
control model primitive sets might be interpreted in terms of
certain primitive sets used by Savage (see section 3). The Egg

Example also illustrates the three points mentioned above.

6.1 CONSTRUCTION FIRM EXAMPLE (adapted from a case study;
see Cyert and March [1, 4.2.2, pages 54 -60]). The market share
of the Home Specialties Department (HSD) for a medium-sized
construction firm had been steadily declining for two years,

primarily because the department's facilities in the main office



32

building were inadequate in size and badly equipped. The top
executives of the construction firm had divided into several

factions over what should be done in the long run and in the

short run to ameliorate the situation.

Several executives supported moving the HSD to a new
location in order to increase its chances of improving its mar-
ket position. Others supported such a move because they felt
it would be easier to eventually ease the department out of the
firm. On the other hand, certain executives who believed in the
efficiency of centralization argued that the facilities of the
HSD should either be improved at the current site or phased out.
Still others, heads of expanding departments, were simply anxious
to acquire the space used by the HSD one way or another.

A previous attempt to directly phase out the HSD had failed
when the HSD head, a powerful senior executive, had opposed it.
He had furthermore announced that he would not cooperate in any
search for a new location for the HSD without a prior public
commitment from the president in support of the long run goal of
improving the market position of the HSD. His current attempts
to secure backing for his position were seriously disrupting the
normal operations of the firm,

In view of this background information, denoted hereafter

0
"o ," the president of the construction firm decided that

by
the time had come to settle the problem. He considered the

following candidate (long run) goals, (short run) controls, and

derived policies.



Candidate Goal

Set

’

Control Sets

(one control set A

market share
of HSD ;B
increased

7’
-
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HSD phased out .

associated with each

candidate goal g)
buy new equipment
A= X{ : | for HSD at 5 Ké: announce 3
& current site goal
appoint committee
Kg: to search for : ké : announce ;
new HSD site goal
attempt to force
A+ = )\'1': HSD head out : >\'2: announce ;
of firm goal
, appoint committee k%’, and
A.; | to search for ; x;:: arnnounce .
new HSD site goal
Policy Choice Set (set of all candidate goal-control pairs)
© = Usd xn)
= (&% A, @A), @A), 67 a))
Ul 271D, @A), @Al @ a)0]

{e,

R



For each policy 8~
the following question:

flows we,) might obtai

State Flow Sets (one set
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in ® the president asked himself
"What distinct situations (i.e., state

n if I implement policy o’ ?"

Qe of state flows associated

with each policy 6 € @)

market share buy new equipment
For policies [g’ :[of HSD 5 k{ :|{ for HSD at
increased current site
, , X{ , and
and (g , A_ :|aifinounce
goal
Q = Q , s
82 A
o HSD market HSD market HSD market
= <w )X m, : share declines}, m,:| share , m,:| share
further stabilizes increases
negative disruptive negative disruptive
% o s attitude of other 0 attitude of other
1° departments towards | ’ 2’| departments towards
HSD continues HSD dissipates

o . . . .
where @  is the "information state'" of the president (see

above).
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market share appoint committee
For policies g': of HSD , Xé : | to search for
increased new HSD site
e, and
and |g’ ,Aé: afinounce
goal

Q ’ =0 ’ ’
@2 " e

W P search . | search wim . m.. mSxdn. n
1 \fails |’ "2 °| succeeds 1° 722 73 1> 2( °
, [HSD attempt to
For policies [g’ ’:|phased]| , xaf: force HSD head
out out of firm
)\'1', and
and |g’”’, )\'2': announce
goal
Q ’ rey = Q ’ 77
(g 3 }\1 ) (g’ 3 )\ 2)
o force out force out
= (w ¢ X (£, :f attempt » £, : attempt X {n,, n
1 . 2 1 2
fails succeeds
phasing out way opened for

X (P, :{ of HSD made |; P, :|smooth phasing .
more difficult out of HSD
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HSD appoint committee
For policies [g””:|phased |, A%’ :|to search for a
out new site for HSD
x”, and
and {g’’, A’ :| ardnounce
goal
Q rey = Q ’ ’
G VO R IR WS
o HSD head HSD head
=qw p X hl: fights ’ h2: cooperates
move in move

X Sl’ 82 X nl, n X (P

Event Flow Algebras

Q

For each 6 € ®, let 66 = 2 ®

The policy chosen by the president was

market share appoint committee
g’ :| of HSD s xé : |to search for new .
increased HSD site, and

announce goal

This choice might have been rationalized as follows (see section
4). To each state flow o’ € QQ,, 9’ € ®, the president
assigned a utility number u(w'|9') representing the desirability
of {w’} obtaining, conditioned on the event "decision maker

chooses 6°," and a probability number o({w’}

') repre-
senting the likelihood of {w'} obtaining, conditioned on the

event '"decision maker chooses 6’ ." He then calculated the
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expected utility
‘fQ u(w|e”) o(dw|e”)
el

corresponding to each policy 6° € ®, and chose the policy

yielding the maximum expected utility.

Discussion. The president's probability and utility
judgments concerning various event and state flows can reasonably
be assumed to have depended on both his contemplated goal and
his contemplated control. In support of this claim with respect

to probabilities, consider the controls

appoint committee appoint committee
Nl s search for new AR CA B search for new €N -
4 "{HSD site; g’ 4 "| HSD site; g’’’
announce goal announce goal
and the event flows
’ o
14 (8]
E"": ({w} x{hl,hz} x{sl} x{nl,nz} X {Pl,Pz} € E(g”,x 4 y -

rs

4

E’7 are logically identical in content, without loss of

Since the two controls xé s A and the two event flows E',

generality let
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appoint committee

to search for new| _ . -
HSD site;
announce goal

A¥Eoe

I
>
]
>
~
~

I
=

~

~

E* ¢ ( {wo} X {31 . (search 1)})5 B’ =

successfu

. 04 . . . .
By assumption {w } is the president's current information

state with respect to the HSD problem; thus presumably

c({w’} (g”, A%) = o({e®} (", A®) =1

and

o(E*| (g7, 1¥))

il

prob({s,}{u’, (g", A®)-o({e’}(g", A %)

Prob({Sl}lwo, (87, A\%) (8)

Vx4

c(E*| (g7, A %)

Prob({s;}|o°, (&"", A9)a({e’}|@"", A¥))

Prob({Sl}|wo, g, A%)) .

Since « contains the information that the powerful HSD head
will not cooperate in the search for a mew HSD site unless
g': (market share of HSD increased) is announced by the

president as his chosen goal, it seems plausible to assume that

Prob({S1 :(EEEZZZSfuJ)}'wO, &%, A%)) 9

. [search ' 0 x4
> Prob({Sl. (succeSSful)}|w , (8 5, A%)) .
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In combination with (8), inequality (9) implies that

o@E*| (g%, A%)) > a@E®*|(g”", A%)

i.e., for fixed choice of control j* =1,/ =)

4 the

l‘. b
president assigns greater probability to

E*:({wo} X {Sl : (search successful)l) € 6(g', K;) N S(g,z’Kzf)
when contemplating the goal g’ : (market share of HSD increased)

than when contemplating the goal g’ : (HSD phased out)

Similarly, it seems plausible to assume that

) s

o(E*| (87, A,)) > o(E*| (8", A

i.e., that the president assigns more probability to

E* : ({wo} X {Sl : (search successful)) under the policy choice

’

" Xé) than under the policy choice (g’, xé) . For

xg: (appoint committee to search for new HSD site) and

ké :(xg, and announce goal) differ only in the announcement

of the goal. Yet, as the president knows from f{w’}, the HSD
head has stated that he will not support the search for a new
site unless the president publicly commits himself to g’ .

In support of the contention that control specification

affects utility judgments concerning future events, suppose

4

1

at current site) the president had specified the more detailed

that in place of the control A, : (buy new equipment for HSD
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controls
buy expensive brand buy cheaper brand
x{lz X equipment for ; A{z ${' Y equipment for s
HSD at current site HSD at current site

with identical associated state flow sets Q, . =0

’ 4 V4
=Q, + .. . Consider the state flow
(8751))

negative disruptive
HSD market o | ttitude of other
share increases/’ 2 departments towards

w¥ {wo},m3 : :
HSD dissipates

an element of Q(g', Xfl) N Q(g', sz) . It seems plausible

to assume that
A ’ ’ o ’ ’ .
u(wr| (g7 A7) > ulwr| (g’ A0 5

i.e., that for "fixed output" u* , the president prefers to
minimize costs.

Finally, in support of the contention that goal specification
affects utility judgments concerning future events, it should
first be noted that satisficing search models, control models,
and econometric policy models accept this as commonplace. The
specified goals (target trajectories) play the role of
"aspiration levels" in terms of which the effectiveness of
alternative controls is evaluated. Utility (cost) is a function
of the "distance" between the state flow which obtains and the
desired goal. (In the gc-expected utility representation
for the control model established above in 5.4, the target

trajectory is an "ideal'state flow.)
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Returning to the Construction Firm Example, consider the
goal g" : (HSD phased out) , the control

attempt to force
HSD head out
of firm, and
announce goal

)\’2,: GAg" )

and the state flow

negative dis-

force ruptive attitude phasing
’, o out out of HSD
w " {wl, £, ; n,: of other depart-| , P.:
1'{ attempt 1 ments towards 1° i made more
fails difficult

HSD continues

an element of Q Once the president publicly

(8" A %) -
commits himself to a goal, it seems reasonable to assume that
he views the attaimment of that goal as a measure of his
effectiveness as a top executive. Suppose in addition to g"
the president had also considered the candidate goal
HSD head phased out if six
o, | month trial run with new HSD
& ‘| head doesn't improve HSD ?
market share
with control set A o = A ,, and state flow set
g
Q vy =Q, 4. . Then, under w’’ the event '"new
(8%2 %) g’ ’ ’
HSD head" does not obtain, and the goal go simply becomes

irrelevant. In contrast, under '’ the goal * is directl
g y

blocked. It thus seems plausible that

’

w”’] @ AN >ulE@ ) .

In order to give an alternative, state-consequence-act

formulation for the HSD problem, it would be necessary to
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specify the choice set in terms of functions mapping states into
consequences. For example, it might be assumed that the '"'state"
s: (no suitable new location for HSD available), the "act"

A: (appoint committee to search for new HSD site, and announce

goal), and the '"consequence" c: (search fails and disruption in

firm continues) satisfy the functional relationship
A(s) =c¢ .

In the actual case study the control X was implemented
by the president; but, even if s had obtained, a unique con-
sequence would not have been determined by s and A . An
unforeseen event s’:(market share position of HSD stabilized
due to external market factors) dissipated the disruption in
the firm before the search was even concluded. Since relevant
but unforeseen events such as s’ commonly arise in real world
decision problems, the specification of real world actions in
the form of functions taking states into consequences would
generally involve some immeasurable amount of approximation.

Secondly, the specification of such functions in effect
requires the decision maker to behave as if he believed that
certain conditioned events had probability one (e.g., Prob(c given
s and )A) = 1) . For many decision problems (e.g., the HSD
problem) this requirement seems to entail a significant

distortion of the actual decision making process.
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As the gc-formulation of the HSD problem demonstrates,
certain decisions can be given an expected utility rationalization
even though the decision maker specifies his available actions in

the form of partial rather than complete contingency plans.

6.2 EGG EXAMPLE. The principal purpose of the following
simple example, a modified version of an "egg problem'" by Savage
[9, pages 13 -157, is to illustrate how the goal-control model
primitive sets might be interpreted in terms of certain primitive
sets used by Savage (see section 3). Comparison of the two egg
problems may clarify a major distinction between the goal-control
expected utility model and the Savage expected utility model. 1In
Savage's egg problem, relevant but ''unobservable'" sets such as
Sl’ Cl’ and F1 (see below) cannot exist; for otherwise the
elements available for choice (e.g., the elements of Fo below)
do not functionally map the observable set of states into the
observable set of consequences.

The egg problem also illustrates the three points listed in
the introduction to section 6,

A decision maker breaks five good eggs into a pan on the
kitchen stove, and then decides to instruct his assistant to
complete the omelet. A sixth egg, which for some reason must be
used for the omelet or discarded, lies unbroken in the kitchen
icebox located next to a wastebasket and across the kitchen

from the stove.



Assume the full problem can be represented in terms of

Savage's primitive sets (S, C, F) as follows:

Set of States

sixth sixth
S =4¢s":| egg s, s°7: |egg
rotten good
center of center of
X ds°°7 . kitchen g7%7s .| kitchen
"1 floor i "\ floor not
slippery slippery
= SO X S1
Set of Consequences
, ruined tasty
C=qe’:|sixegg|, g :| six egg | ,
omelet omelet
tasty five tasty five
,..| €88 omelet egg omelet

g :f and good , 2°77%:] and bad
sixth egg sixth egg
destroyed destroyed
one egg no one

X mess on , | egg mess
the floor on floor

=COXC1 .

44



Set of Acts

tell assistant

tell assistant , to throw sixth
F ={f":{to make a sixth|, f£’":| egg away and s
egg omelet make a five

egg omelet

£, plus £7, plus
r 7 2V Y
£ :{ announce |, £ : | announce
goal goal
tell assistant tell assistant
to take central to take non-

X {| route from , | central route
icebox to from icebox
stove to stove

= F0 X F1 .

Now assume that the decision maker is aware of the

possibilities listed in the sets SO’ CO’ and F but either

0°
through ignorance or considerations of time and cost he does

not consider the possibilities listed in the sets Sl’ Cl’ and
F1 . Moreover, assume that he realizes that his description of
his problem in terms of SO’ CO’ and FO is partial; in partic-

ular, the elements in Fo are not functions mapping each

element in S uniquely into an element of C

0 Hence, by

o .
telling the assistant his goal, the decision maker might be
able to increase the likelihood that the assistant will act in

conformity with the decision maker's wishes in the face of un-

foreseen circumstances.

45
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Assume that the decision maker has decided to model his
problem in terms of a goal-control expected utility model. In
particular, let the candidate goals, controls and derived

policies considered by the decision maker be as follows.

Set of Candidate Goals

tasty five
tasty
C = 20| eix ege g""' egg omelet cc .
& ’ "\ and bad sixth 0
omelet

egg destroyed

Control Sets (one control set associated with each candidate goal)

tell assistant £°, plus
A +,=4{f":| to make a six |, £’’’ announce|p S Fo s
& egg omelet goal
tell assistant
to throw sixth £77, plus
A ssrr=<KE"": | egg away and , £7777:| announce < F,
g make a five goal

egg omelet

Policy Choice Set (set of all candidate goal-control pairs)

©
]

= U (e} x A

(@, £, &7, £7°0Uule” e, ¢ 7))

It

= {6, . . .}
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For each policy 6 € ®, the decision maker asks himself
the following question: "What distinct situations (i.e., state

flows) might obtain if I choose 8 ?"

State Flow Sets (one set Qe of state flows for each policy 6 € ®)

tasty tell assistant
For policies g": six eggl, £’ : [ to make a six
omelet egg omelet
£°, plus
and g’ £’ : | announce
goal

Q rs = ’ rr s
@ e " g

sixth sixth ruined six tasty six no six
=(|ess )| €88 x ¢ |egg omelet |, | egg omelet [, | egg omelet
rotten/ \good obtains obtains obtains
tasty five tell assistant
..., |88 omelet ,, | to throw sixth
and for policies |{g :| and bad » £ !]|egg away and
sixth egg make a five
destroyed egg omelet
.., £°°, plus
and {g’”"’, £7777: | announce
goal
Q(g////’f,/) = Q(gllll’fllll)
tasty five tasty five
sixth sixth egg omelet egg omelet 2:v2a:ty
=¢|egg ,legg % {| and good ,| and bad s omeletgg
rotten good sixth egg sixth egg obtains

destroyed destroyed



Event Flow Algebras

O

For each 9§ € ®, let 86 =2 .

To each state flow w € Qel , 8’ € @, the decision
maker assigns a utility number u(w"G') representing the
desirability of {w'} obtaining, conditioned on the event

"decision maker chooses 8’ ," and a probability number

o({w’}

0°) representing the likelihood of {w’} obtaining,
conditioned on the event "decision maker chooses 6°." He

then calculates his expected utility
IQeu(w|9) G(dwle

corresponding to each choice of policy 6 € ®, and chooses

a policy which yields maximum expected utility; e.g.,
. tell assistant
tasty six 5
‘o, ++s | to make a six egg
g | esg » £
omelet, plus
omelet
announce goal

In keeping with this choice, the decision maker tells the

assistant to make a six egg omelet; and in addition he informs

him that he would like the omelet to be tasty.
When the assistant later enters the kitchen, he notices
an aspect of the true world state whose possible realization

the decision maker has overlooked or ignored; namely,

center of
s : kitchen floor | € S

slippery 1

48
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The assistant is momentarily unsure whether to take the central,
slippery, timesaving route or the noncentral, nonslippery time-
consuming route from the kitchen icebox to the kitchen stove,
with the sixth egg in hand. Nevertheless, upon consulting his
instructions, he observes that the decision maker's goal is to
have a tasty six egg omelet, not a fast six egg omelet. Hence
there is no reason to attempt the central, slippery, time-
consuming route and risk ending up with a five instead of six

egg omelet by way of a one-egg mess on the floor.

Remarks. The gc-model primitive sets (i.e., control,
goal, state and event flow sets) are constructed from the

observable components S0 , C and F of the Savage

0 0
primitive sets S = SO X S1 » C= CO X C1 » and F = Fo X F1
Specification of the unobservable (but relevant) sets S1 ’ Cl’
and F1 is not required.

The elements of S0 ’ C0 , and F0 are in natural
correspondence with the subsets of 8§, C, and F . For
example, the element s’:(sixth egg rotten) in S0 can be
identified with the element

TR e M) o Rt B
in ZS . Under this correspondence each state flow Wy € Qe s

O e ®, 1is an element of ZS X ZC as in section 3.
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FOOTNOTES

1A binary relation > on a set D is a weak order if for

all a, b, c €D

() a>»b or brc (i.e., » 1is connected);
(2) a»b and b »c implies a > ¢

(i.e., > is transitive).

Weak orders have also been referred to as "complete preorderings.'

2A collection ¥ of subsets of a nonempty set X 1is said

to be an algebra in X if ¥ has the following three
properties:
(L) X e %;
(2) 1If A e ¥, then A e , Where A is the
complement of A relative to X

(3) 1f A, B e%, then AUB€%F.

This observation is due to C. Hildreth.
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ABSTRACT

In 7] a "goal-control expected utility model" was for-
mulated which allows the decision maker to specify his acts in
the form of "controls" (partial contingency plans) and to
simultaneously choose goals and controls in end-mean pairs. It
was shown that the Savage expected utility model, the Marschak-
Radner team model, the Bayesian statistical decision model, and

the standard optimal control model can be viewed as special cases

of this model.

In this paper the goal-control expected utility represen-

tation for the goal-control model primitives is axiomatized.
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1. INTRODUCTION

In [7] a "goal-control expected utility model' was
formulated which allows the decision maker to specify his
acts in the form of "controls" (partial contingency plans)
and to simultaneously choose goals and controls in end-mean
pairs. It was shown that the Savage expected utility model,
the Marschak-Radner team model, the Bayesian statistical
decision model, and the standard optimal control model can

be viewed as special cases of this model.

In this paper the expected utility representation for
the goal-control model primitives is axiomatized. The
primitives are reviewed in order to make this paper reasonably
self-contained. However, for a detailed discussion of the
goal-control model together with examples illustrating the

expected utility representation, the reader is referred to [77].
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2. PRIMITIVES FOR THE GOAL-CONTROL MODEL

Let G = {g, ...} be a set of candidate goals, and for

each g € G let Ag = {lg, ...} be a set of controls. The

primitives for the goal-control model ("gc-model") are then

characterized by a vector
(<8, »> {<Qy 7, >|ec0}, <€y, 2, >0 c0))

where

® = {8, ...} = Ug €G {(g, Kg) Ikg € Ag} is the

policy choice set consisting of candidate goal-

control pairs (policies);

# (policy preference order) is a weak order?

on ®;
and for each policy 6 € @,

Qe = {we, ...} 1is a nonempty set of state flows

associated with the policy 6

b (8-conditioned preference order) 1is a weak

order on Qe;

e, = {Ee, ...} 1is an algebra2 of subsets of Qe

whose elements Ee will be called event flows

associated with the policy 6 ;

b3 (6-conditioned probability order) is a weak

order on 89.
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The controls may be operationally interpreted as possibly
conditioned sequences of actions (i.e., partial contingency
plans) entirely under the control of the decision maker at the
time of his choice. The candidate goals g € G may be
operationally interpreted as potential objectives (e.g., pro-
duction targets) whose realization the decision maker can
attempt to achieve through appropriate choice of a control.
The grouping of the controls into sets {Agl g € G} reflects
the possibility that different sets of controls may be relevant
for different goals; e.g., for a decision maker in San Francisco,
the control "travel by bus" is suitable for the goal "vacation
in Los Angeles' but not for the goal "vacation in Hawaii." A
control Xg € Ag may or may not provide for the communication
of the goal g to other persons in the decision maker's
problem environment.

The weak order » on @ can be operationally interpreted

’,r 7

as a preference order as follows. For all @7, o €0,

’ x4

6° > 8°" ® the choice of policy 6° is at

least as desirable to the decision

maker as the choice of policy 077.

The decision maker is assumed to choose a policy (candidate
goal-control pair) 6’ € ® which is optimal in the sense that
6” > 6 for all 6 € @ . Throughout this paper we use "choose
policy 8 = (g, xg)” and "implement control xg with g as

the objective' interchangeably.
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For each © € ®, the set Qe of state flows we can be
interpreted as the decision maker's answer to the following
question: "If I choose policy 6, what distinct situations
(i.e., state flows me) might obtain?" The state flows may
include references to past, present, and future happenings. In
order for subsequent probability assessments to be realistically
feasible, the state flow sets should include the decision maker's
background information concerning the problem at hand.

The 6-conditioned preference orders >, can be interpreted

]

as follows. For all w, w’ € Oe, b e®,

u)>'e w’ o the realization of ® 1is at least
as desirable to the decision maker
as the realization of o', given

the event "decision maker chooses

e ."
Similarly, the 6-conditioned probability orders 29 can be
interpreted as follows. For all E, E” € € 6B,

e b4

E 2e E’ & in the judgment of the decision
maker, the realization of E is
as likely as the realization of
E’, given the event '"decision

maker chooses 6 .,"

A state flow ® may be relevant for the decision maker's
problem under distinct potential policy choices; e.g.,

w € Qe N QQ' for some 6, 6’ € ® . Similarly, the algebras
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{Se} may overlap. Given state flows w, w’ € Qe N QG' for

some 0, 6° € ®, it may hold that w >=e w’ whereas w’ >e, w .

Verbally, the relative utility of the state flows w and w’
may depend on which conditioning event the decision maker is
considering, '"decision maker chooses 6" or '"decision maker

1"
.

chooses 97 Similarly for the relative likelihood of event

flows E,E'eaenae,, 8, 6’ ¢ @ .
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3. AXIOMATIZATION: INTRODUCTION

In sections 4 and 5 axioms will be given which ensure that
the gc-model has an expected utility representation in the
following sense: To each policy 6 € ® there corresponds a
finitely additive probability measure c(-| 9) 69 - [0, 1]

satisfying

o(E|8) 2 o(E'|68) «E =2 E, (1)

6

for all E, E’ ¢ 69 , and a utility function u(- ‘e) : Q. R

]
satisfying

u(w| 6 zu(w’ | 8) & w o w’, (2)

for all w, w € Q such that

e 3

eru<w| 8) o(dw| 6) = Ioe’u(wl 8°) o(dw|8) @8 >67, (3)

for all 6, 6" € @ .

This expected utility representation for the policy
preference order > can be interpreted as follows. To each
state flow w € Qe , B8 € ®, the decision maker assigns a
utility number u(wle) representing the desirability of {w]}
obtaining, conditioned on the event "decision maker chooses 6 ,"
and a probability number c({w}le) representing the likelihood

of {w} obtaining, conditioned on the event "decision maker

chooses € ." He then calculates the expected utility
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u(w | 8) cdw] 8)
Jov@ | ® ool

corresponding to each choice of policy 6 € ®, and chooses a
policy which yields maximum expected utility.

Before beginning the statement of axioms, it might be help-
ful to briefly discuss the relationship of the gc-expected
utility model axiomatization to previously established axiom-
atizations.

Ideally, an expected utility axiomatization should be
calculationally feasible and all the primitives should be
relevant for the decision maker's problem. In actuality, most
expected utility axiomatizations extend the '"basic primitives"
(i.e., the primitives essential for the decision maker's problem)
for mathematical reasons, and this extension often implies an
impossible calculational ability on the part of the decision
maker. (See Fishburn {17] and Krantz, Luce et.al. [3] for reviews
of the expected utility literature.)

In certain axiomatizations the basic primitive sets are
explicitly extended by introducing over these sets a collection
of extraneous gambles, usually infinite in number, which the
decision maker is required to order in preference., In other
axiomatizations the basic primitive sets are implicitly extended.
For example, in the expected utility model of L. Savage [4] the
primitive sets consist of a set S of '"states of the world," a

set C of "consequences," and a set F containing all "acts"
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(functions) taking S into C. TFor most decision problems the
presence of constant functions in F represents an extension of
the basic primitive set of acts available to the decision maker.
In addition, Savage's axioms require S to be uncountably infinite.
Since the decision maker is assumed to order in preference all
functions in F , the uncountability of S introduces a cal-
culational infeasibility.

Reliance on a single primitive preference order seems to be
the principal reason why extraneous elements are introduced into
the primitives of most individual choice models. In order for a
preference order over consequences to be derived from a primitive
preference order over a set B of acts or gambles, the con-
sequence set must somehow be imbedded into B ; e.g., through
constant acts or degenerate gambles. Similarly, in order for
probability judgments to be assessed from a primitive preference
order over B, the acts or gambles in B must be suitably
varied.

In contrast to most individual choice models, the gc-model
primitives include three different types of orders whose
existence is implied by the desired expected utility represen-
tation: a policy preference order >, B-conditioned preference
orders ;>e, and ©-conditioned probability orders 2e .
Consequently, the expected utility representation is obtained

under minimal restrictions on the basic primitives.
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Specifically, in section 4 the representations (2) and (3)
are established under three assumptions (Axioms I - III) which
include the temporary assumption (Axiom I) that probability
representations satisfying (1) have been obtained. Axiom II
is a finiteness restriction on the state flow sets. Axiom IIT
requires the decision maker's primitive preference and prob-
ability orders to be compatible with the existence of a certain
weak order over a mixture set constructed from primitive
elements. As will be discussed in 4.2 below, this weak order
can (but need not) be interpreted as a preference order over
extraneous gambles. Given Axioms I and II, Axiom III will be
shown (4.4) to be necessary and sufficient for the existence
of the desired representations (2) and (3).

In section 5 two different axiomatizations for probability
representations satisfying (1) are presented. The first
axiomatization, due essentially to C. Kraft, J. Pratt, and
A. Seidenberg, establishes necessary and sufficient conditions
for the existence of the desired probability representations.
The second axiomatization, due to Krantz, Luce et., al., estab-
lishes only sufficient conditions for the existence of the
desired representations, but uniqueness is guaranteed. Unique-
ness is of interest in relation to the preference order inter-
pretation offered for Axiom III in section 4 (see 4.2). On the
other hand, when the state flow sets (., are assumed to be

0

finite as in Axiom II, the Krantz et. al. nonnecessary condition
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which ensures uniqueness is strong. These points will be
further discussed in section 5.

Under both axiomatizations the resulting probability
representations are finitely rather than countably additive.
In view of Axiom II, this is all that is needed for the
expected utility representation. If Axiom II were to be
eventually weakened to allow for o-algebras, the extension
to countably additive probability representations would present
no problems. A simple necessary and sufficient condition for
a finitely additive probability representation on a o-algebra
to be countably additive has been obtained by C. Villegas (see

[3, pages 215 -2161).
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4, AXIOMATIZATION: UTILITY

Let the primitives ((©, »), {(Qe, >e>| 6 € @},
{(69, 26>l 8 € ®) for a gc-model be given (see section 2).
The first axiom presented below will be replaced in section

5 by conditions on the primitives.

AXIOM I (TEMPORARY). To each policy © € ® there
corresponds a finitely additive probability measure

c(-le) :Se - [0, 1] satisfying

o(Ele 2 o(E’|0) @ E 2, E”

for all E, E’ e Se .
In the next axiom finiteness of the state flow sets {Qe}
will be assumed in order to use 4.3 below., Although finiteness
of the state flow sets is realistic, it is often convenient to
work with connected sets, e.g., intervals of the real line.
Moreover, as will be seen in section 5, this finiteness restric-
tion is not essential for establishing the existence of the
desired probability representations as in Axiom I. Thus it

would be desirable to weaken Axiom II to allow for infinite

state flow sets.

AXIOM II. For every policy 6 € @, the associated set
n
Q of state flows is a finite set [wé, cees wee} , and the
Q
associated algebra 89 of event flows is given by 89 = 2 ©

(i.e., the set of all subsets of QG) .
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In the next axiom the dacision maker's primitive preference
and probability orders will be required to be compatible with
the existence of a certain extraneous weak order. A preference
order interpretation for the axiom will be discussed after it

is stated. The following definitions and notation will be used.

4.1 DEFINITIONS AND NOTATION. A set M is the mixture

set for a set K if

1) KSM;
2) For all t € [0, 1] and B, D e M, there
exists an element tB + [1-tJD € M;
3) For all t, r € [0, 1] and B, D € M,
(a) 1B+ 0OD =B ;
() tB+ [1-tIp=1[1-¢t]pD + tB;
(¢) t[xB+[1-rD])+[1-tID=trB+ [1-tr]D ;
4) M is the minimal set with properties

1), 2), and 3).

For each policy 06 € @ let Mﬂe = {we » «+.} denote the
n

mixture set for Qe = {wé s eees wee } (see Axiom II); and let
n

-5 0 i i . .
T(8) = Zi=1‘”e cr({we} | o) ¢ MO, where o |e) : g, = [0, 1]
is the finitely additive probability representation for the
f-conditioned probability order (ee s Ze) whose existence is

guaranteed by Axiom I.

Il

Let Q= {(¥4]0) |y e MOy, 8 € ©}, and let

MQ = {b, ¢, d, ...} denote the mixture set for Q.
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AXIOM III. There exists a weak order »* over MQ which
satisfies the following five conditions: For all o, 8’ ¢ @,

’

w, w € O, ¥, 4" eMQ,, and b, c, d €M,

D @le) > (@]e) » vz 0
2) (1()|8) »* (18| = 0> 8";
3) ¢>b,0<t<l=te+[1-tld>*th+T[1-¢tld;
4) d >* ¢ >* b = there exist t, s € (0, 1) such
that tb + [1 - t]d >* ¢ >* sb + [1 - sTd
5 teyle) + (1 - el |o) < ey + [1 - £1y’|e)

for all t e [0, 17,

where >% is defined on MQ by [b >*dl1=[b » d and not
%*
(d > b)]; and ~ is defined on MQ by [b~*d]= [b »* d

and d »* b].

Remarks. Axiom III - 2) is well defined only if Axiom I
holds. Assuming conditions 1) and 2) are compatible, a weak
order on MQ satisfying conditions 1) and 2) always exists.,
(By assumed connectedness and transitivity of the orders (@, »)
and {(Qe, >e>|e € @}, the partial order »° induced on MQ
by the compatible conditions 1) and 2) is transitive and reflexive.

Hence ?p can be extended to a weak order over MQ (see [6]).)

4.2 EXTRANEOUS GAMBLE - PREFERENCE ORDER INTERPRETATION

FOR (MQ, ?*) « The mixture sets MQe, P €E®, may be inter-

preted as sets of extraneous gambles as follows. For each set

{tl, eee E) } of nonnegative coefficients satisfying Z£ e, = 1,
8
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let the corresponding element ¢ = Zi wg t; € MQe be inter-
preted as the gamble which awards 'prize" wg with "probability"
t:i . Under this interpretation, if the probability representation

c(-le) :Ee -+ [0, 1] for the probability order (86, ze)

guaranteed by Axiom I is unique, then

n . .
(e) = L0 wy o(fug} | 9) Mo,

is the gamble which the decision maker will participate in if
he chooses policy 6, according to his own judgments. If
o('le) is not unique, then T(8) approximates this gamble.
Similarly, the mixture set MQ for Q = {(¢e|9)|¢e € Mﬂe ,
® € ®} may be interpreted as a set of extraneous gambles as
follows. Let each element (¢|e) € Q be interpreted as the
event 'decision maker participates in gamble {" conditioned on
the event '"decision maker chooses policy 6." Then for each set
{rl, s rm} of nonnegative coefficients with 2% rj =1, and
each set of elements {(¢9'|6j) € Q[j = 1, seuy m} , the element
b =2, (¢ej| ej) rj € MQ ian be interpreted as the gamble which

]

awards ''prize" (we lej) with "probability" rj . To "participate"
j
in the gamble b, the decision maker imagines that with

probability rj he must participate in the gamble ¢e » With
3
ej as his policy choice.

*

The weak order »" can then be interpreted as a preference

order over the gambles in MQ as follows.
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b co Participation in the gamble b 1is
at least as desirable to the
decision maker as participation

in the gamble c.

Under this gamble-preference order interpretation for
(MQ, »*), conditions 1) -5) in Axiom III can be given straight-
forward interpretations. Condition 1) is tautological, and
condition 2) is essentially tautological if the probability
representations {c(-le) :Se - [o, 1]]6 € ®} are unique.
Verbally, condition 2) reads: The desirability of participating
in the gamble T(8) , given the event "decision maker chooses
policy 6 ," 1is at least as great for the decision maker as the
desirability of participating in the gamble T(8’) , given the
event "decision maker chooses policy 67 ," if and only if the
choice of policy 8 1is at least as desirable to the decision
maker as the choice of policy 6°. (Intuitively, the "tighter"
the probability representations {o(-le): &g ™ {0, 11}, the closer
the gambles {T(e)} approximate the gambles the decision maker
believes he would participate in for each choice of 6 ; hence
the more plausible condition 2) becomes.)

Finally, conditions 3) - 5) can be compared to standard
axioms in the von Neumann-Morgenstern tradition. Condition 3)
resembles Savage's '"'sure thing principle" (see [4, page 21 and
page 1147) and can be given a similar defense. Condition 4) is

a typical Archimedean constraint. Condition 5) states that the
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decision maker is indifferent between a one stage and a two
stage gamble as long as both offer him the same expected
return,

Although conditions 1) -5) in Axiom III become intuitively
plausible under this gamble-preference order interpretation for
(MQ, >*> » Axiom III does not impose this interpretation for
two reasons: it is not necessary; and more importantly, the
underlying assumption that the decision maker can order in
preference all the hypothetical, nonrealizable 'gambles" in MQ

is clearly strong.

4.3 LEMMA [1, 8.4, page 1127, Let M be the mixture set

’

for a set K. Let =" be a weak order on M, and let >’

be defined on M by [B>"D]=[B 2D and not (»>"B)7].°

Then for all B, D, R e M, the following two conditions

(a) D> B,0<t<l1=2tdp+[1-tR>eeB+[1-¢tlR;
M) R>D>B=>tB+[1-tR>D>B+[1l-r]R

for some t, r € (0, 1) ;

are necessary and sufficient for the existence of a function
W:M =R, unique up to positive linear transformation,

satisfying
WB) 2 WD) B 2" D;

W(tB + [1 - ¢ID) = ew@) + [1 - tW) ,

for all B, D eM and t ¢ [0, 1] .
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4.4 THEOREM. Let Axioms I and II hold. Then for each
policy 6 € © there exists a utility function u(-leﬁ Qe - R

satisfying

u(wle) P u(m'le) e w >9 w’, @)
for all w, w’ € QB , such that
Jq u(w|e) ou|®) = [ u|e”) o(dw|e”) = 676", (5)
0 ©

for all o0, 8" € ®, if and only if Axiom III holds.

Proof., Assume Axioms I, II, and III hold. Then by Axiom
IIT -3), 4) and 4.3 there exists a function U¥*: MQ = R

satisfying
U*(td + [1 -tIb) = tU*(d) + [1-c]u*x(b); (6)

U#(d) 2 U*(D) d > b , (7)

for all d, b e MQ and for all ¢t e [0,1]. By Axiom III -

2) and (7), for all 8’, 8’" € @,

u(T(8”) |8 2 u*(T(e’ |8’ ) » 8" > 8", (8)

where T(8), 6 € ®, is as defined in 4.1 By Axiom III - 5),

(7), and repeated use of (6),

ne . .
UR(T(8)|8) = I, _; U(wg|e) o({w;}e), e c® . (9)



72

For each 6 € ®, define a function u('le): Q. =R by

8

u(w|8) = Ux(w|e) , we Qg - (10)
By Axiom III - 1), (7), and (8),

u(wle) 2 u(w"@) e W ?e w’,

for all w, w’ € Q,,8 €®. By (8), (9, (10) and Axiom II,
eru(wle) o(dw|8) = er,u(w|e’) o(dw|e) » 8 > 8",

for all 6, 6" € ® .

Conversely, assume Axioms I and II hold, and functions
{u(-le) :Qe - R|6 € ®} exist satisfying (4) and (5). Define

U° :MQ - R by
0 T T M4 j ]
LG G} e, rplo) re) = 8y Oyl “(“’ei|ei)'ri) "Ey

Clearly U° 1is a well-defined function. Define a weak order

>* on MQ by

a>» beU@ 2u°(M), a,beM .

By (4), (MQ, > > satisfies Axiom III - 1); and by (5) and
Axiom II, (MQ, »*) satisfies Axiom III - 2). Finally,
conditions 3), 4), and 5) in Axiom III can be verified for

(M3, »*) by straightforward calculation.

Q.E.D.
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5. AXIOMATIZATION: PROBABILITY

Two alternative sets of conditions for the weak orders
{(Qe, Ee, 26>| ® € ®} will be presented which guarantee the
existence of finitely additive probability representations
[c(-|9) :6e - (o, 1]| 6 € @] as in Axiom I; in a manner
consistent with Axioms II and III (see section 4). The first
set of conditions, although necessary and sufficient for the
desired probability representations, will not guarantee their
uniqueness. As discussed in 4.2, if the weak order (MQ, »*)
appearing in Axiom III is interpreted as a preference order over
extraneous gambles, then the plausibility of the consistency
requirement 2) in Axiom III varies directly with the '"tightness"
of the obtained representations. For this reason a second,
sufficient set of conditions is presented which ensures the
uniqueness of the probability representations. Since uniqueness
for a probability representation over a finite set is unusual,
it is not surprising that the representations obtained under the
second set of conditions are somewhat rigid.

The first set of conditions will be obtained as a corollary
of the following representation theorem, a reformulation by
D. Scott of a result established by C. Kraft, J. Pratt, and
A. Seidenberg [2]. Scott's proof (not given) involves passing
by means of "indicator functions" from an algebra of subsets
to a finite dimensional vector sﬁace representation for which

a separating hyperplane theorem (a variant of the Hahn-Banach
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Theorem) becomes applicable; hence the somewhat strange
appearance of condition (iv) in the statement of the theorem.
Given an algebra & of subsets of a set (, l,: Q= {0, 1}

will denote the indicator function for E, defined by

1w =
0, wéE.
A function P:€& = [0, 1] will be said to represent a binary
relation » on € if [E »E’] e [P(E) 2P(E’)], for all

E,E" € ¢g.

5.1 THEOREM [5, Theorem 4.1, page 2461. Let € be an
algebra of subsets of a finite set (), and let > be a binary
relation on € . Then for > to be representable by a finitely
additive probability function P on € it is necessary and
sufficient that the conditions

1) Q>9¢;
(ii) E > ¢ ;
’

(iii) E>»E° or E’ > E;

(iV) 1E°+-o. 1 =1°+ooo l

Dn-l

implies D° » E°,

hold for all E, E',El ,Dl €€, i=0, ..., n - 1, where
El > DT for 0<i<n.
Remark. As Scott notes, condition (iv) is an "unpleasant

feature'" since the sum 1A + 1B of two indicator functions

cannot be identified with an element of € except when
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ANB = ¢ . Hence the theorem establishes the representation by
placing restrictions on objects outside of the proper domain of
events € . Nevertheless, the interpretation of the equation in
(iv) is straightforward: every element of Q belongs to
exactly the same number of the Ei as the Di .

A second objection which might be raised to condition (iv)
is its testability. (Although Q is finite, condition (iv)
entails an infinite set of restrictions; for repetition of the
indicator functions is allowed.) However, the proof of 5.1
presented in Reference [2] includes an algorithm for checking in
a finite number of steps whether condition (iv) holds.

According to Scott, 5.1 can be extended to infinite 0 by

appropriate use of the Hahn-Banach Theorem.

5.2 COROLLARY. Assume each state flow set Qe, pe0B,
is finite. Then the following three conditions are necessary and
sufficient for the existence of finitely additive probability

measures {o(-'e): Se - (o, 1]]9 € @} satisfying

o(E|e) = o(E’|8) = E 2, E”,

for all E, E'EEB, 6 €0:

D Q>0 0 €0;
2) E Ze ¢ for all E € 69 , B € @;

3) 1+ ...1 =1 +...1 »0° 2 E°,
£° En-l ° Dn—l 8

i i .

for all E7, D € Be , 1 =0, ¢ee, n -1,

with Elzenl, 0<i<n, forall 6 e®.



A second, alternative set of conditions sufficient for
the existence of probability representations
{o-|e) : e, = [0, 1[6 € ©} as in Axiom I will be obtained
as a corollary of the following theorem, due to Krantz et., al.
We distinguish between necessary conditions which are implied
by the existence of the desired representation, and structural
conditions which are sufficient but not necessary for the

existence of the desired representation.

5.3 THEOREM [3, Theorem 2, page 208]. Let & be an
algebra of sets on a set (, and let 2* be a relation on €
such that for every A, B, C, D € €:

1. (Necessary) (&, =*) is a weak order;
2. (Necessary) Q> ¢ and A 2* ¢
3. (Necessary) If ANB=ANC=¢, then

B =¥ C if and only if AUB =¥ AUC;
4, (Structural) Q is finite;
5. (Structural) If ANB=¢, A =* ¢

and B 2* D, then there exist

¢’, D', E € & such that:

(i) E~*AUB;
(ii) ¢"'ND" = ¢
(iii) E=2c¢’un’;

(iv) ¢’ ~*¢C and D’ ~*D,

76
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4
where [A~*B]=[A > B and B » Al and
%* - %* *
(A>"B1=[A>» B and not (B > A)], A, B € €& . Then
there exists a unique order-preserving measure P on € such

that (Q, €, P) is a finitely additive probability space.

Discussion. In place of condition 4, the original Krantz
et. al. representation theorem imposes a weaker, necessary
Archimedean condition which is compatible with infinite algebras
«, &) .

In 1949 Bruno de Finetti questionad whether conditioms 5.3 -1,
2, and 3 were sufficient as well as necessary for the existence
of a finitely additive probability representation over a finite
algebra (00, €) . A countersxample to this conjecture, involving
a Boolean algebra generated by five elements, is established in
Reference [2]. The nonsufficiency of conditions 5.3 -1, 2, and
3 for infinite algebras (Q, €) is discussed by L. Savage [4,
Chapter III, especially page 407).

As Krantz et. al., note, it is difficult to give a simple
interpretation for structural condition 5. Yet, in the presence
of conditions 1, 2, and 3, condition 5 is strictly weaker than
Savage's postulate P6°, which states: If B, C € €, and
c>'8B , then there exists a partition {Dl, ces Dn} of Q
such that C >* B UDi for each i (see [4, pages 38 -39
and [3, pages 206 - 207)). For example, Savage's P6  forces Q

to be infinite, whereas conditions 5.3 -1, 2, 3, and 5 are
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compatible with certain finite Q (e.g., Q= {a, b, ¢, d},

with Prob(a) = Prob(b) = Prob(c) = .2, and Prob(d) WA)

Since uniqueness is an extremely strong condition for
probability representations over finite algebras, some rigidity
in the Krantz et. al. representing function P is to be expected.
Specifically, the probabilities assigned by P are integer
multiples of a certain minimal fraction 1/n . (To verify that
this restriction holds, see the constructive proof for Theorem
4 [3, pages 44 -527 on which the proof of 5.3 is based.) The
rigidity of this restriction could be somewhat alleviated if the
algebra € were assumed to contain an event such as "N tosses
of a fair coin results in N heads," for some arbitrarily

large N .,

5.4 COROLLARY TO 5.3. Let conditions 2 -5 in 5.3 hold
for each weak order (Qe, € 26>’ ® € ® . Then there exist
unique finitely additive probability measures

{eC*|0): €y = fo, 1]|e € ®) satisfying

o(E|8) 2 o(E’|e) » E 25 E7

for all E, E' € € B B .

e b
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6. THE MAIN REPRESENTATION THEOREM

By combining 5.2 with 4.4, the following representation

theorem is obtained.

6.1 THEOREM. Let a gc-model
(e, =), {(Qe, >e)!@ € 9}, {(Se, ze>|e € ®}) be given, and
assume each state flow set Qe is finite, with Se = ZQe
“xiom II). Then conditions 5.2 -1), 2), 3) and Axiom III are
nc-essary and sufficient for the existence of finitely additive
~renability measures {o(-le) :69 - [O, 1]'6 € ®} and utility
fuv- ~ions {u('le): Qe - Rle € ®} satisfying for all policies

6, 87 € @:

o(E|8) 2 m(E’|6) ® E 2, E’, for all E, E’ € ¢

6 6 °

u(|8) z u’|e) s w2 w’, for all w, w’ € Q

;L ’ ’ ’
IQeu(w|e) c(dwle) 2 IQe’u(wle ) c(dwle e o0,
Remark. In the presence of Axiom II, conditions 5.2 -1),

2), 3) are equivalent to Axiom I (this is the content of Theorem

5.2). Hence Axiom 1iI - 2) is well defined.
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FOOTNOTES

1A binary relation > on a set D 1is a weak order if for
all a, b, c €D
(i) a b or b »c

(i.e., » 1is connected);

(ii) a »b and b »c¢ implies a > ¢

(i.e., » 1is transitive).

Weak orders have also been referred to as 'complete preorderings."

2A collection F of subsets of a nonempty set X is said

to be an algebra in X if F has the following three
properties:

(1) X e F;

(2) If A eF, then A€ eF , where A is the

complement of A relative to X

(3) If A, B eF, then AUB €F.

Fishburn's original proposition is stated in terms of a
binary relation R which he requires to be a "weak order" in
the sense that R 1is asymmetric and negatively transitive
[1, Definition 2.1, page 11]. As is easily verified, the
assumption that =’ is a weak order over M in the sense used
in this paper (see Footnote 1) implies that >’ 1is a "weak
order'" over M in the sense of Fishburn.
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