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ABSTRACT
In the paper we optimize a procedure developed recently to reconcile time series by
flexible least squares. In the previous version of the procedure the author assumed
prior knowledge of the weighting parameter µ of Kalaba and Tesfatsion’s so-called “in-
compatibility cost function”. In the new version, this parameter is estimated from the
sample using an iterative method based on the Newton-Raphson algorithm. We test
the improved method by reconciling the monthly growth rates of the Monthly Economic
Activity Estimator (EMAE) of Argentina with the quarterly growth rates of the Gross
Domestic Product. The results suggest that optimal levels of µ would be close to 1 (the
value suggested by Kalaba and Tesfatsion as prior value) but estimating µ from the sam-
ple instead of keeping it fixed at 1 hardly modifies the reconciled series.

Keywords: Time series reconciliation, Flexible Least Squares, EMAE, Gross Domestic
Product.
JEL Code: C130
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RESUMEN
En el artı́culo optimizamos un procedimiento desarrollado recientemente para conciliar
series de tiempo por mı́nimos cuadrados flexibles. En la versión anterior del proce-
dimiento el autor asumı́a conocimiento previo del parámetro de ponderación µ de la
llamada “función de costo de incompatibilidad” de Kalaba y Tesfatsion. En la nueva
versión, este parámetro se estima a partir de la muestra mediante un método iterativo
basado en el algoritmo de Newton-Raphson. Probamos el nuevo método conciliando las
tasas de crecimiento mensual del Estimador de Actividad Económica Mensual (EMAE)
de Argentina con las tasas de crecimiento trimestrales del Producto Interno Bruto. Los
resultados sugieren que los niveles óptimos de µ serı́an cercanos a 1 (el valor sugerido
por Kalaba y Tesfatsion como valor a priori) y que estimar µ a partir de la muestra en
vez de mantenerlo fijo en 1 apenas modifica la serie reconciliada.

Palabras clave: conciliación de series de tiempo, mı́nimos cuadrados flexibles, EMAE,
Producto Interno Bruto.
Código JEL: C130
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1 INTRODUCTION

In a recent paper Frank (2017) proposed a linear estimator (based on the flexible least

squares criterion) to reconcile time series of different frequencies, understanding by

“reconciliation” a rescaling of the high-frequency series to match the low-frequency se-

ries as close as possible. Recalling the bibliography: Dagum and Cholette (2006), rec-

onciliation is understood as a procedure that leads to a perfect fit of a high-frequency

series to a low-frequency series, assuming that the latter is observed without error while

the former is just a rough proxy of the low-frequency series. Frank (2017) discussed the

traditional view mainly for four reasons. First, because traditional reconciliation meth-

ods do not allow adjustment of high-frequency series in real time but only up to the last

available figure of the low-frequency series. Second, because the common practice of

government statistical offices in time series reconciliation, as described in INDEC (2016),

hides to the public the corrections and updates done in the high-frequency series after

the figures of the low-frequency series become available. Third, traditional reconcilia-

tion transfers the low-frequency errors to the high-frequency series instead of removing

them.1 Fourth, reconciliation as performed in practice is not informative about the true

relationship that links series of different frequencies. The reconciliation procedure pro-

posed by Frank (2017) overcomes these drawbacks although it still requires that the

practitioner knows some parameters in advance. In particular, the practitioner should

know the parameter µ that weighs the error sum of squares of high-frequency series

and the sum of squared deviations of the parameters. The procedure also requires that

the time period in which the parameters of the model remain constant to be fixed in

advance.

2 OBJECTIVES

The aim of this paper is to improve the reconciliation procedure proposed in 2017 re-

garding the knowledge of the aforementioned weighting constant µ. The improved esti-

mator will be used to reconcile Argentina’s Monthly Economic Activity Estimator (EMAE,

for its acronym in spanish) with the quarterly Gross Domestic Product (GDP) series and

the results will be compared with those obtained in 2017.

3 THEORETICAL BACKGROUND

In reference to Kalaba and Tesfatsion’s flexible least squares (FLS) estimator Kalaba and

Tesfatsion (1989) and Frank’s estimator Frank (2017) for time series reconciliation. For

ease of reading, Kalaba and Tesfatsion’s original formulas in matrix notation should be

written. Throughout the paper the notation used is: matrices are writen in bold capitals,

1By “traditional reconciliation” we refer to methods widely spread in official statistcs offices, such as Chow
and Lin (1971), Denton (1971) and Fernández (1981).
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vectors in bold lower case, and scalars in italic; unless otherwise mentioned, all vectors

are column vectors; greek letters are used for parameters; a tilde on a matrix means

that the matrix has been reshaped in a way useful for FLS, as shown next.

3.1 Flexible Least Squares Estimation

Consider a vector of observations y and a set of explanatory variables X such that each

yi is related linearly to the corresponding row vector x′
i. If the parameters of of such

relationship vary along observations, the relationship may be writen as

y = X̃ vec(B) + ϵ, ϵ ∼ N
(
0, σ2In

)
,

where y is the usual n × 1 vector of observations; X̃ is a n × nk block diagonal matrix

arranged as shown below; vec(B) stands for the nk × 1 vectorized matrix of parameters

and ϵ is the usual error term of normal i.i.d random variables. Hereinafter we will use

the tilde to refer to block diagonal matrices in which each block is a row of the matrix

mentioned below the tilde. So,

X̃ =



x′
1 0 . . . . . . 0

0
. . .

. . .
...

...
. . . x′

i

. . .
...

...
. . .

. . . 0

0 . . . . . . 0 x′
n


and vec (B) =



β1

...

βi

...

βn


.

To estimate B under the least squares criterion the function to be minimized, which Kal-

aba and Tesfatsion Kalaba and Tesfatsion (1989) called “incompatibility cost function”,

is

C(B, µ, n) =
[
y − X̃ vec (B)

]′ [
y − X̃ vec (B)

]
+ µ vec (B)

′ D′D vec (B)

= y′y − 2y′X̃ vec (B) + vec (B)
′
(
X̃

′
X̃ + µD′D

)
vec (B) (1)

where µ is a weighting constant and D is a (n − 1)k × nk differentiation matrix so that

D′D has the form

D′D =



I −I 0 . . . . . . 0

−I 2 I −I
. . .

...

0 −I 2 I −I
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . . −I 2 I −I

0 . . . . . . 0 −I I
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and I is a k × k identity matrix. Although the incompatibility function was originally

defined by Kalaba and Tesfatsion as a function of B, µ and n, in practice it is a function

of B only and conditional on µ and n since the parameters and the sample size are

supposed to be given.2 Then, by solving the first order conditions for the incompatibility

cost function we get the so-called “normal” equations and the FLS solution for vec(B)

which will be unique if and only if
(
X̃

′
X̃ + µD′D

)
is a full rank matrix. That is,

vec(B̂)OLS =
(
X̃

′
X̃ + µD′D

)−1

X̃
′
y. (2)

3.2 Fixing the FLS estimator to estimate µ

Returning to the incompatibility cost function (1) and the solution to the first order

condition which leads to the FLS estimator (2). This estimator is conditional on the

parameter µ which up to now was supposed to be known. However, it is possible to

estimate µ adding a second condition ∂C(B, µ)/∂µ̂ = 0 in the following fashion.

C(B, µ) = y′y − 2y′X̃ vec(B) + vec(B)′
(
X̃

′
X̃ + µD′D

)
vec(B),

Then, the first order condition for µ is

∂C(B, µ)

∂µ̂
= vec(B̂)′

∂A(µ)

∂µ̂
vec(B̂) = 0,

where A(µ) = X̃
′
X̃ + µD′D.3 Replacing vec(B̂) by the solution given in (2) a more explicit

expression is obtained

∂C(B, µ)

∂µ̂
= y′X̃

(
X̃

′
X̃ + µ̂D′D

)−1

D′D
(
X̃

′
X̃ + µ̂D′D

)−1

X̃
′
y = 0. (3)

Simple inspection of (3) suggests that (a) µ cannot be easily cleared because it is not

related linearly with X, D and y; and (b) the first order condition does not have a unique

solution for µ. This last point is shown in the following way:

u = D
(
X̃

′
X̃ + µ̂D′D

)−1

X̃
′
y,

so that the first-order condition can be written as ∂C/∂µ̂ = u′u = 0. Without loss of

generality, by replacing the matrix D, which pre-multiplicates the right hand side of the

equality, by the square matrix D∗′
= [D′,0′]′. Note that D∗′

D∗ = D′D so that the condition

u′u = 0 is still fullfilled. Then, excluding the trivial solution for X̃
′
y = 0, the condition is

2The developers of the FLS estimator themselves consider µ fixed, even when they reformule this estimator
in the context of the Kalman filter Kalaba and Tesfatsion (1990).

3Although the matrix between parenthesis was called A the reader should be aware that this matrix has
nothing to do with other matrices called so elsewhere in the paper.
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satisfied if u = 0 and

|D∗|
∣∣∣∣ (X̃

′
X̃ + µ̂D′D

)−1
∣∣∣∣ = |D∗|

|X̃′
X̃ + µ̂D′D|

= 0.

But as |D∗| is null, it is clear that |X̃′
X̃ + µ̂D′D| need not be bounded. In such circum-

stance, there would not be an optimal µ̂ to find out. To overcome this drawback we

propose a slight amendment to the original incompatibility cost function of Kalaba and

Tesfatsion. The proposed amendment is a true weighted average of the error sum of

squares and the squared differences among parameters. That is,

C(B, µ) = (1− µ)y′y − 2 (1− µ)y′X̃ vec(B) + vec(B)′
[
(1− µ) X̃

′
X̃ + µD′D

]
vec(B).

Then, optimizing C with respect to vec(B) and µ results in the first order conditions

∂C(B, µ)

∂vec(B̂)
= −2 (1− µ) X̃

′
y + 2

[
(1− µ) X̃

′
X̃ + µD′D

]
vec(B̂) = 0

so that,

vec(B̂) =
[
(1− µ̂) X̃

′
X̃ + µ̂D′D

]−1

X̃
′
y (1− µ̂) = A−1X̃

′
y (1− µ̂), (4)

and

∂C(B, µ)

∂µ̂
= 2y′X̃ vec(B̂) + vec(B̂)′

(
−X̃

′
X̃ + D′D

)
vec(B̂)− y′y = 0.

However, the second condition can be manipulated as shown below to get a more friendly

expression in order to compute the second derivative, whose usefulness will become

apparent shortly.

∂C(B, µ)

∂µ
= 2 (1− µ)y′X̃A−1X̃

′
y + (1− µ)2 y′X̃A−1

(
−X̃

′
X̃ + D′D

)
A−1X̃

′
y − y′y

= (1− µ)y′X̃A−1
[
2A + (1− µ)

(
−X̃

′
X̃ + D′D

)]
A−1X̃

′
y − y′y.

Note that the matrix between brackets may be rewritten as

2A + (1− µ)
(
−X̃

′
X̃ + D′D

)
= 2 (1− µ) X̃

′
X̃ + 2µD′D − (1− µ) X̃

′
X̃ + (1− µ)D′D

= (1− µ) X̃
′
X̃ + (1 + µ)D′D.

Therefore,

∂C(B, µ)

∂µ̂
= y′X̃A−1

[
(1− µ̂)2 X̃

′
X̃ + (1− µ̂2)D′D

]
A−1X̃

′
y − y′y = 0.
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This expression is, however, non-linear with respect to µ (recall that A is also a function

of µ), so ought to solve it by a computational method such as the Newton-Raphson’s

iterative procedure (Greene, 2008, p. 1070). The reader may find a brief explanation

of this method in the appendix at the end of the paper. Then, in the context of the

incompatibility cost function C∗(B, µ), the recursion relationship of Newton-Raphson’s

method may be restated as

µ̂(h+1) = µ̂(h) −

[
∂2C∗(B, µ)

∂µ̂2
(h)

]−1
∂C∗(B, µ)

∂µ̂(h)
, (5)

where the superscript between parenthesis refers to the iteration number. To compute

µ̂ in this fashion we must compute the second derivative of C∗(B, µ) with respect to µ.

To that end, we call C = (1− µ)2 X̃
′
X̃ + (1− µ2)D′D. Then,

∂2C(B, µ)

∂µ2
= y′X

[
∂A−1

∂µ
CA−1 + A−1

(
∂C
∂µ

A−1 + C
∂A−1

∂µ

)]
X′y.

The reader may check that ∂C/∂µ = −2A and C = (1 − µ)(A + D′D). In the appendix we

develop the derivative of A−1 with respect to µ. Replacing the derivatives involving A−1

and C and arranging the terms conveniently we get

∂2C(B, µ)

∂µ2
= y′X̃

[
A−1 ∂A

∂µ
A−1CA−1 − A−1

(
2 Ink + CA−1 ∂A

∂µ
A−1

)]
X̃

′
y

= y′X̃
(

A−1 ∂A
∂µ

A−1CA−1 + A−1CA−1 ∂A
∂µ

A−1 − 2A−1

)
X̃

′
y.

Note that every term between brackets is a symmetric matrix, so the expression above

can be reduced to

∂2C(B, µ)

∂µ2
= 2y′X̃A−1

(
∂A
∂µ

A−1C − A
)

A−1X̃
′
y. (6)

Writing ∂A/∂µ in terms of X̃ and D, and C in terms of A and D, (6) is

∂2C(B, µ)

∂µ2
= 2y′XA−1

[
(1− µ)

(
D′D − X′X

) (
Ink + A−1D′D

)
− A

]
A−1X′y.

Thus, the first order condition is now able to be solved for µ̂ by Newton-Raphson’s

recursion. By replacing the first and second derivatives in (5) results in

µ̂(h+1) = µ̂(h) −
1

2

y′X̃A−1
[
(1− µ̂(h))

2 X̃
′
X̃ + (1− µ̂2

(h))D′D
]
A−1X̃

′
y − y′y

y′X̃A−1
[(
1− µ̂(h)

) (
D′D − X̃

′
X̃
) (

Ink + A−1D′D
)
− A

]
A−1X̃

′
y
.
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Although this expression looks quite cumbersome, it may be rewritten in a more friendly

fashion just calling G1 = X̃
′
X̃, G2 = D′D, A = (1− µ)G1 + µG2 and d = A−1X̃

′
y. Then,

µ̂(h+1) = µ̂(h) −
1

2

d′Cd − y′y
d′ [(G2 − G1)A−1C − A

]
d
. (7)

3.3 Time Series Reconciliation through FLS

As already mentioned, Frank (2017) proposed a FLS estimator for time series reconcil-

iation. The goal was to fit one or more high-frequency series to a low-frequency series

assuming that both sets are observed with error. To that end, the aforementioned au-

thor proposed a data generating process expressible by two sets of equations.

Hȳ = Z̃vec(B) + ϵ, ϵ ∼ N(0, σ2Ω), H = Im ⊗ 1q, ȳ = Py

vec(B̂0) = vec(B) + ν, ν ∼ N
[
0, σ2

ν (In ⊗Ψ)
]
. (8)

In the first set, the high-frequency series in Z are related linearly to the “expanded” ver-

sion of the low-frequency series ȳ by fixed, but time-varying, parameters. The expanded

low-frequency series Hȳ is just a time series in which each observation appears repeated

q times to match the lenghth of the high-frequency series. H is an “expansion matrix”

while P = H′/q, is an m×mq matrix that averages the elements of the unobservable time

series y. Z̃ is an n × nk matrix of high-frequency series with its rows placed blockwise,

as in X̃. Perhaps, a clearer way of defining the relationship between Z̃ and y would be

ȳ = PZ̃ vec(B) + ξ, ξ ∼ N
(
0, σ2Φ

)
and Φ = PΩP′.

This relationship, however, is useless for reconciling time series in real time since the

number of rows of Z̃ must match the length of the low-frequency series, that is, n = mq.

The first set of equations in (8) has a random error term whith unknown covariance σ2Ω.

An explanation on how to estimate σ2Ω will be given below. The second set introduces

a prior estimate B̂0 of the true parameters of the first set. This estimate is supposed

to be unbiased with a known block-diagonal covariance structure In ⊗ Ψ. Under this

specification, the incompatibility cost function to be optimized is the following extended

version of Kalaba and Tesfatsion’s original incompatibility function.

C∗(B|µ) =
[
Hȳ − Z̃ vec (B)

]′ (
σ2Ω

)−1
[
Hȳ − Z̃ vec (B)

]
+

µ

σ2
vec (B)

′ D′D vec (B)+

+
1

σ2
ν

[
vec(B̃)− vec (B)

]′
(In ⊗Ψ)

−1
[
vec(B̂0)− vec (B)

]
. (9)
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The first order condition for minimizing C∗ conditional to µ, σ2, σ2
ν and B̂0 is

∂C∗(B|µ)
∂vec(B̂)

= −2
1

σ2
Z̃
′
Ω−1Hȳ + 2

1

σ2
Z̃
′
Ω−1Z̃ vec(B̂) + 2

µ

σ2
D′D vec(B̂)+

+ 2
1

σ2
ν

(
In ⊗Ψ−1

) [
vec(B̂)− vec(B̂0)

]
= 0.

Rearranging terms, calling α = σ2
ν/σ

2 and manipulating conveniently the expression

above the solution for vec(B̂) is

vec(B̂) =

[
Ink +

1

α

(
Z̃
′
Ω−1Z̃ + µD′D

)−1 (
In ⊗Ψ−1

)]−1

vec(B̂)FGLS+

+
[
Ink + α

(
In ⊗Ψ−1

)−1
(
Z̃
′
Ω−1Z̃ + µD′D

)]−1

vec(B̂0). (10)

where vec(B̂)FGLS is the generalized version of the FLS estimator given in (2).

vec(B̂)FGLS =
(
Z̃
′
Ω−1Z̃ + µD′D

)−1

Z̃
′
Ω−1Hȳ.

Notwithstanding, if vec(B̂)FGLS were a true GLS estimator, the term containing µ should

appear multiplied by α. However, the formula given above is correct because actually

matrix Z̃
′
Ω−1Z̃ + µD′D was introduced to reformulate vec(B̂) as a function of vec(B̂)GLS

and vec(B̂0).

The reader may check that the weighting matrices that pre-multiply vec(B̂)FGLS and

vec(B̂0) add up to Ink so that the current estimate might be interpreted as a weighted

average of the estimate of B known before sampling and that computed from the sample.

Frank (2017) provided an alternative expression to compute the reconciled series Ĥȳ

when all the time periods share the same single prior b̂0. The expression is as follows

Ĥȳ |µ, α = Z̃
∗
[
Ink +

1

α

(
Z̃
′
Ω−1Z̃ + µD′D

)−1 (
In ⊗Ψ−1

)]−1

vec(B̂)FGLS+

+ Z∗
[
Ink + α

(
In ⊗Ψ−1

)−1
(
Z̃
′
Ω−1Z̃ + µD′D

)]−1

b̂0. (11)

To make this estimation feasible it is necessary to replace Ω, Ψ and b̂0 by proper proxies.

In fact, Frank’s paper focused on finding a good proxy for Ω. The one found is a Toeplitz

matrix W whose first column w is the linear programing solution satisfying

min
w

{
1′w

}
subject to w1 = 1, A1w = q2

[
ϕ1

2
, ϕ′

i>1

]′
, and A2w ≥ 02n−1,

where A1 is a set of m linear constraints (see appendix in Frank (2017)) that relates the

elements of Ω to those of a covariance matrix Φ and A2 is a set of 2n− 1 constraints in-

troduced to guarantee that each wi ≥ 0 and the difference wi−wi+1 ≥ 0, as are supposed
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to be the typical covariance structures with positive autocorrelation. The covariance

structure that arises from w is completely non-parametric and can be plugged in di-

rectly in (10) if Ω were non-singular. Anyway, to avoid numerical unstabilities if W were

ill-conditioned, Frank assumed an AR(1) covariance structure for Ω and used w to com-

pute the single parameter of this structure, ρ.

The previous result is extensible to the FGLS estimator by just calling X̃ = Ω− 1
2 Z̃ and

y = Ω− 1
2 Hȳ. However, it should be pointed out that in the new incompatibility cost

function the parameter µ has a different meaning than the one in the original function.

In fact, the relationship between µ in Kalaba and Tesfatsion’s estimator and µ∗ in (4) is

exactly µ = µ∗/(1 − µ∗), provided µ∗ ̸= 1. So two courses of action may be followed to

compute the reconciled series Ĥȳ. One course would be to compute directly

Ĥȳ |Ω, α = Z̃
∗
{

Ink +
1

α

[
(1− µ̂∗) Z̃

′
Ω−1Z̃ + µ̂∗ D′D

]−1 (
In ⊗Ψ−1

)}−1

vec(B̂)+

+ Z∗
{
Ink + α

(
In ⊗Ψ−1

)−1
[
(1− µ̂∗) Z̃

′
Ω−1Z̃ + µ̂∗ D′D

]}−1

b̂0, (12)

where µ̂∗ is the estimation that arises from Newton-Raphson’s iterative procedure, per-

formed when computed vec(B̂). The other course of action would be to compute µ in a

preliminar round, but assuming Ω = I and α = 1, and then proceed in the usual way as

if µ is known.

4 EXAMPLE: RECONCILING EMAE WITH THE QUARTERLY GDP

Next, the reconciliation of EMAE’s growth rates with the quarterly GDP growth rates

for the period ranging from January 2010 to September 2015 is presented. The period

January 2007 to December 2009 was set aside to compute the prior estimates b̂0. Note

that the growth rates to be reconciled are EMAE’s first published growth rates without

any further revision, so the EMAE series used in the example that follows is not the

downloadable version available at INDEC’s official homepage, but one compiled by the

author based on INDEC’s press releases. Both the monthly and the quarterly series

chosen to examplify the proposed reconciliation procedure are the same that those used

in Frank (2017) in order to let the results be fully comparative.

The figure below shows EMAE’s first reported interannual growth rates, the quarterly

GDP interannual growth rates reconciled with EMAE’s last revised series (following Den-

ton’s method) and overlapped the reconciled series computed according to the proposal

explained in Frank (2017) and the improved version explained above. Simple inspection

of the graph shows that the FLS series fits better the quarterly series than the GLS

series, although both alternatives perform accurately. The graph also shows that the
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Figure 1. EMAE’s first reported growth rates, quarterly GDP growth rates reconciled
with EMAE’s last revised series by Denton’s method and FLS reconciliation.

proposed procedure returns a softer monthly series and avoids spurious values at the

end of the series that form a typical outcome of traditional reconciliation methods. Re-

call that the common practice to overcome this problem is to forecast the low-frequency

series one period ahead and then reconcile the whole series as if all the figures were

obtained by the same data generating process. This practice, however, also requires

forecasts of monthly future values to match the period covered by the quarterly series.

So the accuracy of the reconciliation procedure, at least at the end of the series, relies

heavily on the method chosen to forcast future periods. This issue might obscure the

whole reconciliation method.

Although the graphical inspection does not reveal conspicuous differences between the

series reconciled with fixed and estimated µ, a statistical test was conducted to check

the convenience of estimating µ. To that end, the difference between the reconciled

series was modeled as a SARIMA (p,d,q)(P ,D,Q) process with the program X-13 ARIMA-

SEATS.4 The program was used to adjust 576 possible specifications, corresponding to

all possible combinations of p, q = {0, 1, 2, 3}, P,Q = {0, 1, 2} and d,D = {0, 1}, and select

the one with the lowest MAPE (mean absolute percetage error), as long as this does not

exceed 15% and does not show evidence of overdifferentiation in the seasonal and non-

seasonal component. If none of the models fits the data, it may be concluded that the

data follow a white noise process and there is not a significant difference between the

series.

4X-13 ARIMA-SEATS is a free software developed by the U.S. Census Bureau downloadable from
https://www.census.gov/data/software/x13as.html.
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5 CONCLUDING REMARKS

The convenience of reconciling low and high frequency series by FLS instead of the

traditional Denton method was discussed in Frank (2017) and it is mainly supported

by the fact that the estimation error cannot always be attributed to lack of information

in the construction of the high frequency series. In this paper the focus is put on

the estimation of the parameter µ (assuming that both series are noisy), a topic that

seems to have been neglected in the literature referring to the FLS estimator. During

the course of the investigation it became evident that the so-called “incompatibility cost

function” proposed by Kalaba and Tesfatsion cannot be optimized with respect to µ

because the parametric space of µ is unbounded. Instead, a slightly modified version

of the incompatibility cost function was proposed to bound µ in the interval µ ∈ (0, 1).

The posibility that µ = 0 or µ = 1 was explicitly excluded because these values lead to

singular matrices A, or degeneracy in the estimation of the type

lim
µ→1

vec(B) = lim
µ→1

[
(1− µ)X′X + µD′D

]−1 X′y(1− µ) = 0

The new reconciled series of quarterly and monthly growth rates did not show a major

improvement compared with a previous series calculated keeping µ fixed in 1, as the dif-

ference between both series could not be fitted with any of the tested SARIMA models.

However, it is yet premature to state that estimating µ from a sample does not improve

substantially the reconciliation of time series assuming that µ is fixed because the value

of µ in our particular example was 0.4626, equivalent to 0.8608 in the traditional scale,

which is quite close to µ = 1 often used as a default value in flexible estimation.

Besides, it was found that starting the Newton-Raphson algorithm with values close to 0

or 1, convergence cannot always be guaranteed. These failures are attributable, mostly,

to the slowness of the algorithm and, in a lesser extent, to numerical instabilities that

hindered the inversion of matrices A. These latter cases could have been avoided by re-

placing problematic inverses of A with approximate inverses obtained by SVD-inversion.

However, in the exercise all matrices were inverted by pure Gaussian elimination and

back-substitution in order to detect this type of numerical drawbacks. When the initial

values chosen were not close to 0 or 1, and δ < 0.001, the convergence was reached in a

few steps.
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ANEXOS

A The Newton-Raphson Method

A brief explanation of Newthon-Raphson’s recursive procedure for finding the roots of

a real-valued function is as follows. Recall first the Taylor decomposition of a function

f(x) in the neighborhood of a certain point xm.

f(x) = f(xm) + (x − xm)′
∂f(xm)

∂xm
+

1

2
(x − xm)′

∂2f(xm)

∂xmx′
m

(x − xm) + . . .

In particular, at some point xm+1, the function f(x) can be approximated by the first

two terms of the Taylor series

f(xm+1) ≈ f(xm) + (xm+1 − xm)′
∂f(xm)

∂xm

and, in case f(xm+1) = 0

xm+1 ≈ xm −
[
∂f(xm)

∂xm

]−1

f(xm). (13)

If f(x) were a function to be optimized, for instance the errors sum of squares of a

linear model, expression (13) is useful to find recursively the estimated parameters of

the model. In terms of a standard regression (13) may be rewriten as

bm+1 = bm −
[

∂2L

∂bmb′
m

]−1
∂L

∂bm
.

where ∂L/∂bm is the first derivative of the error sum of squares or the log likelyhood

function, and m is the iteration number.

B Some results in matrix calculus

Recall that for any non-singular square matrix A there exists a unique matrix A−1 such

that A−1A = I. Then, if A is a function of µ, deriving this identity with respecto to µ on

both sides of the equality yields,

∂A−1

∂µ
A + A−1 ∂A

∂µ
= 0, so that

∂A−1

∂µ
= −A−1 ∂A

∂µ
A−1.


