SIMULATION
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A CRITICAL LOOK AT QUALITY IN
LLARGE-SCALE SIMUILATIONS

There is a disconnect between ASCI science and management. The author proposes an
alternative paradigm. Simulation quality depends on the quality of insights gained, but
software engineering is not the discipline to develop those insights. The author also
proposes a definition for validation and differentiates it from current internal quality and
verification approaches.

he Jan.-Mar. 1998 IEEE Computa-

tional Science & Engineering presented

two articles on the Department

of Energy’s Accelerated Scientific
Computing Initiative, from two respected au-
thors. John Gustafson from Ames Lab at Iowa
State University discussed ASCI’s computational
problems.! Alex Larzelere, the past Director for
Strategic Computing and Modeling for Depart-
ment of Energy Defense Programs, discussed
software engineering and management.? The
content of the articles could not have been more
diametrically opposed.

Herein lies one of the biggest problems in
large-scale simulations: management thinks that
the “techy stuff” is a major annoyance, and the
technical people do not understand the manage-
rial need to keep costs and schedules under con-
trol. Both sides speak in the language of metrics:
lines of code, test coverage, and dollars spent on
one hand, and error and convergence on the
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other. But these metrics measure different things
for different purposes. Discussions about lines
of code tested and rates of convergence do not
lead to meaningful communications.

The role of management and science in simu-
lation development must be changed. Software
engineering is meant to produce software by a
manufacturing paradigm, but this paradigm sim-
ply cannot deal with the scientific issues. This
article examines the successes and failures of
software engineering. I conclude that process does
not develop software, people and their tools do.
Second, software metrics are not meaningful
when the software’s purpose is to guarantee the
world’s safety in the nuclear era. Finally, the
quality of simulations must be based on the qual-
ity of insights gained from the revealed science.
Aristotle talked about it 2,300 years ago; it is
time to listen. I propose a category-theory defi-
nition of validation.

Is there a problem?

"This is not just an academic discussion. Prob-
lems such as the disconnect between manage-
ment and technical people can lead to inaccu-
rate or incomplete simulations. Failure has real
consequences. Imagine this CNN news report:

MaAY=JuNE 1999

53



[Jan 28, 2003.] This just in. From Makkah, Saudi
Arabia. An FA-18 fighter carrying a tactical nu-
clear weapon has crashed in the center of this
holiest of all Islamic sites. Although the weapon
was not armed, it detonated. US experts cannot
explain how this explosion could have occurred.
The city was filled with people making the hajj.
Because of the pilgrimage, there is no estimate of
the number of dead. Indeed, we may never know.

Can current simulations be held to the high
standard that ASCI demands? Can we guaran-
tee the above story never becomes a reality? Is
such an accident possible? Believe it! Here are
just a few of the problems in technical systems
that have surfaced in the literature:

¢ On October 5, 1960, the North American
Defense Command went to 99.9% alert be-
cause the moon came up—the designers
“forgot” that the moon rising over the hori-
zon would show on radar. Forgiven. Except
that 20 years later and twice in one month,
NORAD threatened to shoot everything
because of computer glitches.?

® The software in Apollo 11 had the sign
wrong on the gravitational constant: some
programmer made gravity repulsive instead
of attractive.

¢ Patriot missiles missed a Scud over Dhahran,
Saudi Arabia, during the Gulf War. One
problem among many was that their soft-
ware used two different binary versions of
the number 0.1. This led the Patriots to im-
properly compute the closing speed.

Can American management practices and
software engineering guarantee that millions of
lines of code will be without significant defects?
If Les Hatton is correct that the number of fatal
errors is proportional to the log of the number of
lines of code,’ then a million-line code has ap-
proximately 10 fatal errors. Million-line simula-
tions are common.

Also, we have some hints from reading W.
Edward Deming’s Out of the Crisis.’ The con-
cept of quality he proposes has yet to take hold
of American manufacturing. Because software
engineering uses the same metaphors as manu-
facturing, we can expect software engineering
to not adhere to Deming’s thoughts. Even more
disconcerting is that software is nowhere nearly
as well-crafted as an automobile.

Besides the disconnect between management
and technical people and the failure to embrace

quality, two key factors will likely contribute to
future simulation failures:

* Scientific computing is subject to any num-
ber of failures: scientific and engineering
judgments that get modified; numerical
techniques that change due to new algo-
rithms, environments, or precision require-
ments; and vagaries in computers and com-
puter programming that lead to an unstable
environment.

® Reliance on simulations represents a huge
cultural change for all concerned. We can-
not expect this transition to be simple or ex-
pect the world to wait while it occurs.

The modeling cycle and validation

Our primary concern is about models, not simu-
lations. Models refer to the systems of assump-
tions, functions, and relations that make up a sci-
entific or engineering discipline. In my article
“Science, Computational Science, and Computer
Science: At a Crossroads,” I review the Baconian
scientific method cycle of modeling, experimen-
tation, and insight, including simulation as a form
of experimentation. We validate simulations for
the same reason we rerun experiments. The val-
idation exercises often produce deep insights,
which we then use to modify the models.

Modeling and insight

But let’s be clear about the goals. We’re not in-
terested in the codes per se. Richard Hamming
said it best: “The purpose of computing is in-
sight, not numbers.” Insight is a very elusive
commodity and might take years to develop. In-
sight is what scientists and engineers count on
to guide their research. Nobel prizes are given
for insight, not necessarily for details.

"Technical disciplines are not the only ones that
need insight. A story about music illustrates sev-
eral points. First, how valuable is experience and
insight? Vladimir Horowitz was convinced that
one note of the many thousands in Beethoven’s
Apassionata piano sonata was wrong. Going to
the original, he found he was right. The score
had been miscopied almost from the beginning.?

The moral is clear: Horowitz had the insight
born of years of study and experience—something
that seems scarce these days. Beethoven wrote
wonderfully structured music; Horowitz knew
from the structure what the note had to be.

These insights are crucial to modeling. Lar-
zelere points this out in ASCI’s case: the people
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with first-hand knowledge of nuclear munitions
will most likely be gone by 2010. This problem
is not restricted to ASCI. As the older engineers
and scientists retire, their knowledge, insights,
and intuitions are lost.

History shows that you must be prepared to
accept insights. Rontgen is quoted as saying,
“Things must be believed to be seen.” Our pres-
ent university system does little to educate for
insight. Universities are under increasing pres-
sure to prepare students for that first job. His-
tory shows that most engineers never advance
formally past their undergraduate education. We
should be teaching models and thought pro-
cesses, not facts. Modeling starts and ends with
insight. But much hard work in the middle
might or might not be usable. To the goal-
oriented, non-science-trained manager, the in-
sights do not count. Therefore, management
sees validation as a place to cut costs. The con-
sequence for science—no insights, no model
improvement, no economic improvement.

Simulations and validations

Management hopes that simulations will take the
place of costly and lengthy development and test-
ing. We must be able to validate that the science
and engineering are “correct enough” from cur-
rently available or reasonably cheap test data. This
usually means consistency among the many nu-
merical experiments. We must also verify that the
codes accurately reflect the best that science and
engineering have to offer for the problem at hand.

Simulations evolve and are subject to long,
costly developments. As understanding of the
model improves, the simulation must change to
reflect this. “Full science” simulations place ex-
traordinary demands on machine and code.
Consequently, the simulations are rewritten for
any number of reasons. Large portions might
not be reusable because of changes in the nu-
merical method or computing environment; al-
most certainly, the detailed scientific codes will
change, perhaps drastically. But each rewrite re-
quires validation.

Modeling asks and answers questions about a
system, using a particular paradigm. Validation an-
swers the question “How well does the model re-
flect objective observations?” The operations re-
search (OR) community has long had a paradigm
for validation—Figure 1 shows Sargent’s Circle,
which depicts the components of the development
cycle as problem, conceptual model, and computer
model. The inner arcs represent the development
process, and the outer arcs, the V&V process.

Problem Conceptual

model
validity

Operational
validity

Experimentation Analysis

Computer
model

Conceptual

model
Implementation

Formal verification

There are two separate circles because develop-
ment and V&V might evolve at different rates. If
the V&V organization is totally independent of
the development organization, these evolutions
might be badly out of synchronization.

Sargent’s Circle fails to capture that V&V
plays a vital role in the self-correcting nature of
the process of science, and is not just the prod-
uct. In OR, this might not be a problem, but in
science this is exactly the problem.® Validation
should guarantee a model’s usefulness and up-
grade the process by which science and engi-
neering proceed.

Also, Sargent’s Circle is too old (1979) to rec-
ognize modern software-development processes.
But far too many ways exist to graphically dis-
play the various phases of software development
and team organization. I leave this to others.

Quality explained

Having looked at the end product—modeling
and insight—we can now address the question
of what quality means in science, mathematics,
and simulations. The concept of quality in sci-
ence and mathematics is not new; it goes back
2,300 years to the Posterior Analytics of Aristotle.
I discussed its evolution in another article.®
Frederick Suppe presented a wonderful review
of the state of the philosophy of science; his re-
marks give us much to contemplate on how val-
idations should be conducted.’

I can think of no better way to start any dis-
cussion about quality than to look at Deming’s
14 Points (see Figure 2). After all, they’ve
worked well for Japan. Some of these ideas are
pretty radical, especially in an organization that

Figure 1. Sar-

gent’s Circle.
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Figure 2.
Deming’s 14
Points.®

Constancy of purpose.

Everybody wins.

Design quality in.

Cease doing business on price tag alone.
Continuous improvement.

Training for skills.

Institute leadership (not supervision).

Drive out fear.

© © N o g s~ 0w DdPE

Break down barriers.
10. Eliminate slogans.
11. Method (get rid of numerical goals/quotas).

12. Joy in work (abolish merit systems, as they
promote competition rather than cooperation).

13. Continue education (not just about your job).

14. Accomplish the Transformation.

has been quite successful over the years doing
something else. Deming’s main emphasis is that
people, not process, are responsible for devel-
oping quality products. Engineering education
today stresses these principles because some or-
ganizations succeed when they adopt these at-
titudes. Unfortunately, engineering proponents
of Deming’s principles fail to appreciate that
they apply to manufacturing, and not design.
Simulations are not bolts turned out on an as-
sembly line.

What would be a good prototype of the high-
quality, highly innovative organization? What
is that organization about? How do they do it? I
propose that an excellent prototype is the fa-
mous Lockheed Martin Skunk Works (origi-
nally Lockheed’s Advanced Development Pro-
jects) (www.lmsw.external.lmco.com/Imsw/text/
body.html). The Skunk Works developed the U-
2 and SR-71 airplanes. A look into how
Clarence L. “Kelly” Johnson and Ben Rich ran
the Skunk Works reveals an organization to
which I’'m sure Deming would have given his
stamp of approval.

If the purpose of computing is insight, then
we can measure the quality of the computing by
the quality of the insight. Because insight leads
to knowledge, we judge quality by the knowl-
edge. But the major players in the technical
game all have decidedly different views of

knowledge:

* Scientific knowledge is inductive and re-
quires experimentation and observation.

* Mathematical knowledge is classically de-
ductive proof.

* How computer science will define its epis-
temology is not clear—if it knows what the
problem is at all.

Knowledge requires justification; quality assur-
ance is basically knowledge justification. The
point is that if we cannot agree as to what con-
stitutes knowledge, we cannot agree what con-
stitutes quality. Nor can we agree on quality as-
surance until we can agree on justification.

I have proposed three principles for CSE
knowledge:*

® Physical exactness. We must strive to elimi-
nate nonphysical (mathematically conve-
nient) assumptions.

* Computability. We must identify noncom-
putable relationships. Most mathematical
relationships turn out to be approximate,
not exact.

® Bounded errors. No formulation is acceptable
without a priori error estimates or a poste-
riori error results.

These ideas plus the existing ideas of technical-
knowledge justification are a start.

Impediments to quality

How do we gain quality? Unfortunately, it’s not
something that you find in the ground or on a tree.
Quality is produced by people, so the lack thereof
comes from people. How do we get poor quality?

Cognitive complexity

V.A. Vyssotsky of Bell Labs often gave insight-
ful talks about his world; I was fortunate to hear
him on many occasions. One of his comments
was, “I've never seen a poorly performing un-
derloaded system.” This is especially true for
people: overloaded, confused people lead to
disasters.

Charles Perrow advances a thesis that accidents
such as Three Mile Island have two causes: mind-
boggling component complexity and mind-bog-
gling interconnectivity of components.® Is this not
what is happening in simulations with very com-
plex code spread across 9,000 processors? Look-
ing at the spectrum of activities in the design, de-
velopment, deployment, and maintenance of
nuclear weapons, do they contain enough com-
plexity and connectivity to harbor another Three
Mile Island? We should expect that at some point
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the complexity of the process will overwhelm our
cognitive ability to understand it. Let me call this
the issue of cognitive complexity.

Cognitive complexity is the difficulty in un-
derstanding a concept, thought, or system. Ulti-
mately, the validity of code comes from our abil-
ity to understand the entire simulation. Cognitive
complexity is an attempt to quantify mind-bog-
gling. We know that this complexity is 7 = 2
“things” and is closely related to Pareto distribu-
tions, but where is it for each person? For the
programming group? How do we get a handle
on this?

The cost of quality

Historically, the cost of quality has been thought
to be extremely high in both time and money.
Deming attacks this view much better than I
could.’ But because “time is money,” costs make
it hard to sell quality in our frantic, market-driven
economic system. Computer science researchers
now concentrate on “safety,” “safety-critical,” or
“mission-critical” systems (such as NASA shuttles
and nuclear power plants) because you can make a
case for the resources to insure high quality. But
these costs are high: Nancy Leveson reports a cost
of $15 million for inspecting a 1,200-line program
for a nuclear reactor in Canada. How much more
so for ASCI and other high-profile simulations, as
in the aerospace and automotive industry?

Standards

There is no dearth of advice; the documents
and organizations shown in Table 1 figure
prominently in software-engineering literature.
Not all this advice is worth listening to. For ex-
ample, ISO9126, on quality in simulations, lists
six attributes: efficiency, functionality, main-
tainability, portability, reliability, and usability.
They do not list correctness, validatability, and
verifiability. You might counter with, “But reli-
ability is the same thing.” The previous
Horowitz story shows that reliability is not
equal to correctness: the score was reliably
copied—except once.

"To read the literature on the ISO 9xxx standards
and the Capability Maturity Model, you would
think all is well. Interestingly enough, Japanese
industry has no ISO standards because their own
national standards exceed the ISO/CMM stan-
dards. So why rush to ISO/CMM? Consider this
about ISO: you can turn out junk as long as you
know you are turning out junk.

Even so, standards are assumed to be the so-
lution to software quality. For example, the UK

Table 1. Quality in software engineering.

Organizations Documents
ISO ISO 9xxx
IEC 1508 (was ISO/IEC SC 65A
[65A Secretariat 122])
NIST ANSI/ASQC Q 90-4
US Dept. of Defense MIL-Q 9858A, MIL-I 452058
NATO NATO AQAP 1-3
Software Eng. Inst. Capability Maturity Model (CMM)
IEEE Total Quality Management
UK Defence Dept. UK Def Stan 00-55
SAME
NASA
ACM
AIAA
ad nauseam

Defence Department chose five rules to guide
the choice of a programming language. The lan-
guage should

1. have a formally defined syntax,

2. have a means of enforcing subsets,

3. have well-understood semantics and a for-
mal means of relating code to design,

4. be block structured, and

5. be strongly typed.

Obviously, the current stable of languages
does not stack up well. For example, Rule 2 re-
quires an ad hoc tool, if we knew what the subset
was supposed to be. Rule 3 is really two items.
The first is the language semantics, which is of-
ten incompletely understood, even by very ex-
perienced programmers. The second is the
tracking of code to documents, which is com-
pletely outside the purview of the compilers—
another ad hoc tool.

Miracle cures

The software-engineering literature is filled with
magical solutions to development problems. Fred
Brooks said it best:

There is no single development in either tech-
nology or management technique which by itself
promises even one order-of-magnitude improve-
ment within a decade in productivity, in reliability,
in simplicity.”
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For ASCI, a major focus is on what are known
in the literature as problem-solving environments.
Much of the PSE work is being performed by
John Rice and his colleagues at Purdue. Itis too
early to tell exactly what form these systems will
take or what their exact place in the scheme of
things will be. However, we must be wary that
management will see PSEs as a magic cure-all (a
silver bullet in Brooks’ sense). M.M. Lehman
further cautions,

To expect process models of themselves to im-
prove the quality of software ... permitting, for
example, total mechanisation of the process, is as
futile as the search over the last three decades for
automatic programming; [It] is, in fact, part of
the same mirage.'”

Academe

But things get worse. In a scathing indictment,
Greg Wilson pointed out that academic com-
puter science is flawed in that the students al-
ways play with toy projects.!! My observation,
both in and out of academia, is that science and
engineering students “pick up” computer
knowledge on their own. This makes Wilson’s
observation even more chilling: the players
have neither the skill set nor experience to de-
sign, implement, or validate a large, complex
simulation.

Industry

Where computer science is practiced for real—
in industry—the groups simply are not given
time or resources to develop sound practices that
the groups can live with.

Certainly one of the outputs of software engi-
neering has been tools. There is a large collec-
tion of software tools—sometimes called shelf-
ware—that industrial groups attempt to use but
soon discard, for whatever reasons, as irrelevant.
“The shelfware syndrome is singular, if not
unique, to the software world.” So the hunt
continues for quality design disciplines and
methods for measuring quality.

Artsy programming

Some will counter the drive to understand qual-
ity in terms of the code as written. They use the
“artsy” argument: “Programming is an art and
you can’t constrain an artist.” Horowitz’s story
belies that argument. Anyone who thinks that
great paintings occur without immense periods
of training and preparation simply have not read
their art history.

Speed freaks
My observation, first at Bell Labs and again as
moderator of comp.parallel, has been that pro-
grammers love to talk about tricks to make the
code faster, but I have never heard a program-
mer talk about tricks to make a code safer. Speed
is the opiate of programmers.

The following comment from Les Hatton sets
the tone for the “speed freaks:”

It is probably best to ban optimization of any ...
code on the grounds that it is responsible for the
bulk of the compiler errors reported in most lan-
guages and also because it effectively alters the
defined characteristics of the program.?

How serious is the speed problem? If the late
Seymour Cray was proud of anything, it was
the speed of his designs. A lot of that speed was
in the arithmetic. In fact, the Linpack bench-
marks were the standard fare for the super-
computer-marketing corps for years. Now we
have Lapack. According to James Demmel,
new releases of Lapack will be for IEEE 754
arithmetic only. A personal communication
from Demmel indicates that there are many

reasons for going to IEEE-only arithmetic.
Good-bye, X-MP.

The main concerns

Looking at the anecdotal evidence, we can find
many areas of concern. (For more food for
thought, see the related sidebar.)

People. Everyone needs to understand that in-
sight is the reason to model. People can produce
high-quality simulations when they are well-
trained and well-motivated. CSE means that
people have to be trained to work well in the
group environment, something for which many
people are not trained. It is especially troubling
that the software industry continues to have an
“any Java programmer will do” attitude.

Design. The evolution of simulations should
follow scientific and engineering practice, not
marketing practice. Conceptual integrity is of-
ten missing, thereby making the current code
impossible to understand. Most failures come
from what was not correctly specified; in the
case of simulations, it is the science. Teams can
drift off specification. V&V should not be inde-
pendent of design. Current testing methodolo-
gies ignore numerical analysis, numerical meth-
ods, and floating-point computation. Current
measures of software engineering merit might
not be appropriate.
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Food for thought

Below are some conclusions about software quality from
what | can only hope will become a widely read paper by
Les Hatton® and from other sources.? I've also listed some
obvious questions.

* Good practice matters. Unfortunately, academics don’t

teach it and organizations can’t enforce it. (What is
good practice? Is good practice decidable? Enforce-
able? What good practice is prevented by languages?
What good practices are available to enhance speed?)
= Software-engineering practice does not address CSE.

(What special good practices stem from science, math-

ematics, and simulations?)

* Speed must become subordinate to correctness.
(What practices for speed should be abolished? Which
should always be in force?)

» Detailed specifications, quality-assurance procedures,
and formal testing are not enough. (Where does proof
end and test begin? Why is proof so hard?)

* Double precision does not solve problems of unstable
codes or ill-conditioned problems. (What practices en-
hance numerical stability? What should programmers
“tell” programs?)

* Uncertainty caused by using less-well-defined algo-
rithms is several times worse than that from using for-
mal mathematical definitions. (Why don’t we under-
stand the translation of mathematics into programs?)

* Paradigm shifts in language or formal methods do not
appear to automatically solve the problem. (What par-
adigm shifts are needed?)

« Safe subsets for languages are very important. How do
we identify and enforce these subsets? How do we cer-

tify them?

 Comprehensive and objective testing, formal meth-
ods, and multiple versions might be helpful. (Might is
the operative word. Which formal methods? Can we

make multiple versions legitimately? Cost-effectively?)
Construction and testing of static code fault finders are
needed to find formally undefined behaviors in lan-
guages and systems, help enforce known standards,
screen out well-defined behaviors we know we should
not use, and help assess quality. (What are the undesir-
able language and design practices? Are these know-
able a priori? What is decidable—that is, computable?)
Documentation is not a panacea. (Why is the “pro-
gramming” literature such a mess? We are likely docu-
menting the wrong information: The derivation is the
thing.)

Current software-engineering metrics and processes
measure nothing of interest except those measures
discussed by Norman Fenton and Shari Pfleeger.® |
claim that those measures are more of cognitive
complexity than any inherent measure of intrinsic
complexity.
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"Two tasks are especially difficult: judging the
appropriateness of the numerical algorithms and
the parameter space, and certifying the compu-
tational and observed error.

The computing environment. There are three
major problems: First, the environment is un-
stable with respect to tools. Second, machine ob-
solescence demands constant rewriting of soft-
ware. Third, the programming model du jour
prevents the reuse of either design or software.
No end is in sight.

Tools are hard to develop and use. The imple-
mentation teams have neither the time nor the

funds to develop their own tools. Computer-
algebra systems and theorem-prover support
might not be available or used properly. There
are no trusted, validated, or verified libraries or
compilers.

Technical verification and validation

Our ultimate goal is to develop methods for de-
signing quality into the simulation from the be-
ginning. Thus far in numerical mathematics and
computer science, we have not gotten at the root
cause of the difficulty of going from pencil-and-
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paper mathematics to a validated simulation.
Clearly, this is a huge step.

Toward that goal, I've developed a definition
of V&V that is reasonably independent of trendy
terminology. My view is that Francis Bacon got
it (mostly) right in 1620.

Developing the basic terminology

A system is a language and a collection of rules. A
model is something described in a system’s lan-
guage, using the system’s rules. We are given an
observational system, which we can observe and per-
haps even alter, but of whose internal functioning
we do not have knowledge. Our observations are
encoded in some observational language that need
not be numerical. Using the language of a theo-
retical (or formal) system, we develop a theoretical
model—that is, a statement of the functioning of
the observed system. Using a calculational system,
we determine that model’s calculational outputs, and
compare them to the observations.

If there is no observable system, there is no
validation (whatever validation turns out to
mean). You have to have a standard to compare
against. That standard has to be out of the mod-
eler’s control. Nature does not negotiate.

Validation compares the system’s observed fea-
tures, through the observational language, with
the theoretical model’s outputs. It determines
whether or not we are justified in believing that
the model’s outputs will always predict what
would be observed. The validation problem is to
set out the conditions under which we agree that
the observations and calculations sufficiently
agree, and that the theoretical system will pro-
duce this agreement in future calculations.

The verification problem is one of formal sys-
tems and therefore applies only to the theoreti-
cal system.

In the validation context, testing is no more
than experimentation in the Baconian paradigm
(But in the 85% of the system that is inherently
computer science, testing might mean something
else.) Although there might be software tools that
aid experimentation, such things as “random” or
“mutant” testing would seem to not apply.

Developing the definition

We need to pay attention to the three classes of
systems: observational, theoretical, and calcula-
tional. Rudolf Carnap and Carl Hempel already
address the observational-theoretical link.” Cross-
ing the Fetzer boundary (see below) between the
theoretical and calculational system leaves the
formal world. I believe that the theoretical sys-

tem’s main use is to determine properties for
consistent calculations: “How do I know it’s
right?” Complete validation of the observa-
tional-theoretical-calculational systems requires
that we compute the right numbers for the right
reasons.

The following justification attributes are more
or less standard: well-posed problems, well-condi-
tioned formulations, stable numerical methods, con-
vergence, and error analysis. Other attributes
should include accuracy, ease of use, maintain-
ability, and validatability. We assume we receive
a problem from the scientists that is well-posed
and well-conditioned. A well-posed problem has
a solution. A well-conditioned problem does not
behave badly. Our goal is to use a stable numer-
ical method that converges for the problem and
for which we can analyze the numerical errors.
We have to guarantee that errors introduced in
the solution process are smaller than those in-
troduced during observation.

To understand validation, we must understand
the basic method of communication between the
scientist and the machine. I want to make some
distinctions not normally used in the literature
and to merge the computer into the chain. You
can think of mathematics as progressing from
the ideal to the actual (my thanks to one of the
referees who suggested this wording), in seven
levels:

1. Classical analysis as practiced in science
and engineering. This is the world of ide-
alized science. Here we have infinite pro-
cesses, an uncountable number of num-
bers, countably infinite precision, and
idealized solution processes. This encod-
ing of the system is the subject of Carnap
and Hempel’s development.’

2. Constructive analysis as practiced by fol-
lowers of Errett Bishop, theoretical com-
puter science, and certain areas of logic.
Here we have rational numbers, so we have
a countable number of numbers and so in-
troduce error. Whether or not Platonic
analysis and constructive analysis are equiv-
alent is a long-standing point of contention.

3. Numerical analysis as the study of approx-
imation, error, convergence, methods, and
stability with rational numbers. You could
consider it an extension of constructive
analysis. It allows for “indefinitely long but
finite” computations.

4. Numerical methods as the study of numer-
ical analysis on finite arithmetics such as
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IEEE (abstract) floating point. We have a
finite number of numbers, finite precision,
and finite processes.

5. Scott domains as a means of understanding
semantics. Scott domains let us understand
the meaning of computing constructs and
programs.

6. The Fetzer boundary.!? James Fetzer’s con-
troversial article “Program Proofs: The Very
Idea” advanced the idea that until we actu-
ally run a program, everything is a formal
system capable of analysis. Once run, the
system is no longer formal, and proof is
meaningless.

7. Machine codes as the active agents. This
now includes real costs and real implemen-
tation problems. This produces the calcu-
lational output.

Breaking down the modeling in this way is
convenient because each level introduces a sep-
arate concept of error and the much more dan-
gerous situation of error propagation up and
down the chain. Each of Levels 1 to 5 is formal,;
therefore, deductive verification is feasible.

"To adequately define validation, I turn to a cat-
egory-theoretic framework. Categorical language
is useful here to eliminate disciplinary thinking.
The objects are model representations. Mor-
phisms relate two models: isomorphic ones are ab-
stractly the same, while monomorphisms embed
one into another. Each of Levels 1 to 5 can be
thought of as a category with functors converting
one form to another as we proceed from the ideal
to the actual. Validation in the formal systems is
determining the properties of the functors and fol-
lowing properties throughout the system.

Saying all this does not make it so. More to
the point, what are the properties of these mag-
ical morphisms? This is obviously technical work
that needs completion.!?

Intrinsic quality and internal quality

As I discussed in “Quality explained,” our view of
quality comes by way of epistemology: how good
is the insight and knowledge we receive from the
simulation, and how well can we justify what we
are doing? Whatever warrants we have must be
tied to the model itself and hence intrinsic to it.
Thus, the knowledge we want has several dimen-
sions. The sum total of our faith in the system of
models and machines I call in#rinsic quality. Each
dimension, such as the mathematics or the physics,
has its own idea of internal quality.

In science, Occam’s Razor stands as the mea-
sure of internal quality in a relative sense. Each
scientific and engineering discipline has its own
view of quality. For example, there is the mythi-
cal, elusive mathematical elegance in mathemat-
ical circles. However, science, engineering, and
mathematics all use consensus as the basis of
knowledge. In computer science, the concept of
quality might be the most elusive of all. I would
say that computer science has focused on inter-
nal quality: lines of code, test coverage, and so
on. Intrinsic quality is more; it addresses all im-
plementations. Intrinsic quality is the realm of
the scientist and engineer.

Let’s focus on numerical problems with nu-
merical analysis. Numerical mathematics has
standards of quality dating back three centuries:
rates of convergence, error estimates, condition
numbers, and sensitivity, among others. But
these standards are for unlimited precision.

The idea of validation is foreign to mathemat-
ics. However, I argue that it is an inherent part of
numerical programming. Consider zero-finding
algorithms. They have a verification requirement
(Does the algorithm and code work as required?)
and a validation requirement (Is this algorithm
appropriate for this particular situation?).

There is much work to do before we have vi-
able, universally acceptable floating-point im-
plementations. The computer industry seems to
be dragging its collective heels on implement-
ing IEEE 754. IEEE 754 is not just hardware; it
is the entire computing environment. William
Kahan regularly updates his Web site with
known problems (www.cs.berkeley.edu/~wkabhan/).
And while we have been worrying about IEEE
compliance, the three major chip manufacturers
have taken integer overflow interrupts out of the
chips or made them hard to intercept. A check
of manufacturers’ specifications shows that many
chips do not generate either integer or IEEE
754 exceptions (see www.cs.clemson.edu/~steve/
except.html). Unfortunately, even if all the safe-
guards were in place, we do not have the design
mechanisms to prevent programmers from sub-
verting them or to force programmers to use
them at all.

What type of problems might we have? Here
is one example. I examined the number of
times sin’x + cos’x # 1. In the interval [0, 774]
in steps of 272, I found almost 30,000 viola-
tions, or approximately 3% of the time. How
many of you already knew this? What is the
consequence? Nobody seems to know. But we
can say that sin’x + cos’x = 1 is neither verifi-
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able nor a justifiable assumption.

We, as scientists and mathematicians, need to
look for the intrinsic attributes of the science and
mathematics and how they carry over to the
code, perhaps seeking the simplest structures
and algorithms (not necessarily the shortest or
fastest). Therefore, intrinsic attributes are those
in every instance of the simulation. Internal
quality refers to those program elements that can
be measured or attributed to the abstract pro-
gram tree. Hatton observes that poor internal
quality and dependence on weak linguistic fea-
tures almost guarantee poor overall quality:

All the [internal] quality that is likely to be built
into a code component must be built in before
compilation, while the software is soft. ... After
compilation, the software becomes brittle and the
costs of building in [internal] quality, together
with programmer resistance, rise considerably.’

Hatton has proposed these measures of inter-
nal quality:

* The number of statically detected faults.

* The number of transgressions of group pro-
gramming standards.

® The number of uses of nonstandard fea-
tures or vendor-dependent linguistic fea-
tures with respect to the programming lan-
guage standard.

® The number of uses of features outside a
validated, safe subset (ANSI Fortran, ISO/
IEC 9899 for C, the new standard for C++).

¢ 'The number of uses outside standard, vali-
dated libraries such as the C standard, Lapack.

All these numbers should be zero. However, ex-
perience certainly shows that unless these at-
tributes are uniformly and universally enforced
in each and every compile, our best efforts will
be for naught.

Likewise, the virtual machine must be vali-
dated using such programs as Paranoia and
Machar. (Strangely enough, only one reference
to Paranoia exists in the literature. My col-
leagues and I are working to change that.)

Ways to measure the internal quality of pro-
grams exist. The compiler literature develops
good mathematical models of structure. The
hope of measuring the internal quality of every
compilation rests on understanding how quality
manifests itself. That means that metrics of com-
piler structures must form the foundation of in-
trinsic quality: control-flow structure, dataflow

structure, data structure, parallel structure, op-
timization structure, and semantic structure.

As far as I know, no one has applied such in-
formation to the concept of internal quality.
These concepts have been used to derive met-
rics.'* Some compilers do communicate infor-
mation about parallelism. However, a better in-
formation/feedback mechanism would make for
better internal quality. I find the pragma or di-
rective approach dangerous, in the same way
Hatton found optimization dangerous.

ere’s a homework assignment. The

setting is the 1940s. Kelly Johnson

designed the Lockheed P38 Light-

ning. During development and even
into early use, its tails twisted off when it flew
faster than approximately Mach .60. Johnson
had suspected from the beginning that com-
pressibility effects in the transonic region might
cause problems. But first, the team had to battle
critics who thought it was the Lightning’s unique
design. Compressibility finally won out as the
culprit. The development team eventually over-
came the problem, primarily using wind tunnel
tests because the plane was too dangerous to fly
in those regimes.

Your assignment? Put this into the modern
setting. Using only the knowledge available in
the early 1940s, your team is to develop a simu-
lation of the P38. Your simulation must work out
the compressibility problem and be the basis of
the redesign. The simulation must be able to
minimize the number of wind tunnel tests.
(Modern wind tunnels might cost several mil-
lions of dollars per use.)

Hint: NASA researchers I contacted about this
task say it is probably impossible. Consider what
this means for simulation-based procurement.
(This is the doctrine that no prototypes need to
be built for something like the B-2.) A discussion
for another time, perhaps? $
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