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Notes on Discrete Time Stochastic Dynamic Programming

1. The Finite Horizon Case

Time is discrete and indexed by t = 0, 1, ..., T < ∞. The environment is stochastic.
The uncertainty is introduced through zt, an exogenous random variable (or shock)

which follows a Markov process with transition function (or cumulative conditional

distribution) Q(z0, z) = Pr (zt+1 ≤ z0|zt = z) and with z0 (initial value for the shock)

given. We assume that zt (but not zt+1) is known at time t, so clearly zt is a state of

the economy.

The objective function is defined by the expected sum of instantaneous returns

u(xt, ct) discounted by the factor β < 1. This return function u(·) is a continuous
and bounded function of the state variable xt and of the control variable ct.We assume

xt ∈ X ⊂ < and ct ∈ C (xt, zt) ⊂ <, hence we allow the feasible choice set C to depend
on the pair of states of the economy (xt, zt).

The law of motion of the state x is: xt+1 = f(xt, zt, ct), with x0 given. The action

ct in each period will depend only on the current states through the (possibly) time-

varying function gt : X × Z → C, i.e. ct = gt (xt, zt) , ∀t. Given the time-separability
of the objective function and the assumptions on the Markov process and the law

of motion f (·), the pair (xt, zt) completely describe the state of the economy at any
time t. The function gt is referred to as decision rule. The sequence of decision rules

πT = (g0, g1, ..., gT ) is called policy. A policy is feasible if each generic element gt

belongs to C(xt, zt). It is said to be stationary if it does not depend on time, i.e.

gt (xt, zt) = g (xt, zt) , ∀t.
Define now the expected discounted present value of following a given feasible policy

πT from the initial time 0 until the final time T as:

WT (x0, z0, πT ) = E0

TX
t=0

βtu (xt, gt (xt, zt))
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where it is understood that the expectation is taken with respect to Q(z0, z), that x0, z0

are given and that xt+1 follows f(xt, zt, gt (xt, zt)). The dynamic programming (DP)

problem is to choose π∗T that maximizes WT by solving:

maxπT
WT (x0, z0,πT )

s.t.

xt+1 = f(xt, zt, gt (xt, zt))

gt (xt, zt) ∈ C (xt, zt)
x0, z0, Q(z

0, z) given

We will abstract from most of the properties we should assume on Q to establish

the main results. For all practical purposes it is sufficient to know that Q must satisfy

the Feller property, a restriction which guarantees that the expectation function E is

bounded and continuous in xt.1

We want to know when the DP problem above has a solution. The following theorem

does so.

Theorem of the Maximum: If the constraint set C (xt, zt) is nonempty, compact

and continuous, u(·) is continuous and bounded, f(·) is continuous, and Q has the Feller
property, then there exists a solution to the problem above, called optimal policy π∗T

and the value function VT (x0, z0) =WT (x0, z0, π
∗
T ) is also continuous.

Proof. See Stokey-Lucas, p. 62.

Rmk: Notice that the value function is the expected discounted present value of the

optimal plan, i.e.

VT (x0, z0) = E0

TX
t=0

βtu (xt, g
∗
t (xt, zt)) .

Corollary: If C (xt, zt) is convex and u(·) and f(·) are strictly concave in ct, then
gt (xt, zt) is also continuous.

Given the existence of a solution, we can therefore write:

VT (x0, z0) = max
πT

E0

(
u (x0, c0) +

TX
t=1

βtu (xt, ct)

)
.

1 A careful explanation of these properties with an introduction to Markov Chains can be found in Stokey-
Lucas, chapters 7,8,9.
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By the law of iterated expectations: E0 (x1) = E0 (E1 (x1)), hence:

VT (x0, z0) = max
πT

E0

(
u (x0, c0) + E1

TX
t=1

βtu (xt, ct)

)
.

Now let’s cascade the max operator:

VT (x0, z0) = max
c0

E0

(
u (x0, c0) + max

πT−1

E1

TX
t=1

βtu (xt, ct)

)
,

where πT−1 = {c1, c2, ..., cT} . We can perform this step because the recursive struc-

ture of the problem guarantees that cs will affect the dynamics of the state for t 1 s,

but not for t < s. With some simple algebra on the discount factor, we obtain:

VT (x0, z0) = max
c0

E0

u (x0, c0)+ βmax
πT−1

E1

TX
t=1

βt−1u (xt, ct)| {z }
WT−1(x1, z1)

 .
Hence, if we use the definition of VT−1 (the expected present value of the optimal

policy with T − 1 periods left) and pass through the expectation operator, we reach:

VT (x0, z0) = max
c0

{u (x0, c0) + βE0 [VT−1 (x1, z1)]} .

Generalizing this result to the case in which we have s periods left to go, inserting

the state equation into next period’s value function, and using the definition of condi-

tional expectation, we arrive at Bellman’s equation of dynamic programming with finite

horizon (named after Richard Bellman (1956)):

Vs (x, z) = max
c∈C(x,z)

½
u (x, c) + β

Z
Z

Vs−1 (f(x, z, c), z
0) dQ(z0, z)

¾
(1)

where x and z denote more precisely xT−s and zT−s respectively, and z0 denotes zT−s+1.

Bellman’s equation is useful because reduces the choice of a sequence of decision rules

to a sequence of choices for the control variable. It is sufficient to solve the problem in

(1) sequentially T + 1 times, as shown in the next section. Hence a dynamic problem

is reduced to a sequence of static problems. A consequence of this result is the so
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called Bellman’s principle of optimality which states that if the sequence of functions

π∗T = {g∗0, g∗1, ..., g∗T} is the optimal policy that maximizes WT (x0, z0,πT ), then if we

consider the remainder of the objective function after s periods WT−s (xs, zs, πT−s),

then the functions
©
g∗s , g

∗
s+1, ..., g

∗
T

ª
which were optimal for the original problem, are

still the optimal ones. Thus, as time advances, there is no incentive to depart from

the original plan. Policies with this property are also said to be time-consistent. Time

consistency depends on the recursive structure of the problem, and does not apply to

more general settings.

1.1 Backward Induction

This is an algorithm to solve finite horizon DP problems.

1. Start from the last period, with 0 periods to go. Then the problem is static and

reads:

V0(xT , zT ) = max
cT∈C(xT , zT )

u (xT , cT )

which yields the optimal choice g∗T (xT , zT ) depending on the final value for xT and

the final realization of zT . Hence, given a specification of u(·), we have an explicit
functional form for V0(xT , zT ).

2. We can easily go back by one period and use the constraint xT = f(xT−1, zT−1,cT−1)

to write:

V1(xT−1, zT−1) = maxcT−1∈C {u (xT−1, cT−1)+

+β
R
Z
V0 (f(xT−1, zT−1,cT−1), zT ) dQ(zT , zT−1)

ª
which allows to solve once again for g∗T−1 (xT−1, zT−1) and to obtain V1(xT−1, zT−1)

explicitly.

3. We continue until time 0 and collect the sequence of decision rules into the optimal

policy vector.

4. Given the initial conditions at time 0, we can reconstruct the whole optimal path for

the state and the control, contingent on any realization of {zt}Tt=0.
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2. The Infinite Horizon Case

When the horizon is infinite, i.e. T → ∞, we cannot proceed with the backward
induction algorithm to solve the problem, as there is no last period in which to start.

The DP problem (conditional on the initial state) is the same at each point since we

always have an infinite number of periods left to go, hence the environment is stationary.

It follows that the value function V (x, z) will be time invariant as well. In the infinite

horizon case, we can write the Bellman’s equation as:

V (x, z) = max
c∈C(x,z)

½
u(x, c) + β

Z
Z

V (f(x, z, c), z0)dQ(z0, z)
¾

(2)

where we have dropped the subindexes in the value function. The solution to this

problem will be a stationary (time-invariant) policy function c∗ = g∗(x, z).

It will be useful to think of the above equation as a functional equation, i.e. an

equation where the unknown is not a constant but a function Ψ(x, z) belonging to some

functional space B. The equation will be of the type:

T (Ψ) = max
c∈C(x,z)

½
u(x, c) + β

Z
Z

Ψ(x0, z0)dQ(z0, z)
¾

(3)

where T is a mapping from B into B. Our objective is to find the solution to that

equation, i.e. a function V belonging to the same functional space B that satisfies the

fixed point property V = T (V ) displayed by the Bellman equation (2). We also want to

try to establish whether equation (2) can be thought of as the limit of the DP problem

with a finite horizon displayed in (1) as s approaches infinity.

To establish the existence of a solution and to characterize it, we therefore need to

introduce some basic elements of functional analysis.2

2.1 Some Useful Mathematical Concepts

Definition: Metric Space. A metric space is a set S together with a metric or

distance function d : S × S → <+ satisfying the following conditions ∀x, y, z ∈ S:

1. d(x, y) = 0 iff x = y

2 Most of them can be found in Chapters 3 and 4 of Stokey-Lucas (1989), and in the Appendix of Sargent
(1987). For an introduction to the main concepts of real analysis, see Kolmogorov-Fomin (1970).
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2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z)

Ex. 1: The Euclidean space <n equipped with the Euclidean metric is a metric space
(PROVE IT).

Ex. 2: The space of continuous and bounded real functions defined over some set X,

defined as:

B ≡ {Ψ : X → < | Ψ ∈ C and m < Ψ (x) < M , ∀x for some m,M ∈ <}

equipped with the sup metric d∞ = d (Ψ1,Ψ2) = supx |Ψ1(x)−Ψ2(x)| (where the sup
operator is the supremum over the domain of the functions) is a metric space (PROVE

IT).

Definition: Norm. If the point zero belongs to the metric space, then we can define

the norm of y as the distance between the point y in the metric space and zero, and

denote it as ||y||.
Rmk: For instance the sup norm would be defined as ||Ψ||∞ = supx |Ψ(x)|

Definition: Cauchy sequence. A sequence {yn} in a metric space (S, d) is called
a Cauchy sequence if ∀ε > 0, ∃ N(ε) s.t. d(yn, ym) < ε if n,m ≥ N(ε).
Rmk: From the definition it follows that a sequence is Cauchy if limn,m→∞ d (yn, ym) =

0. Hence, all convergent sequences are Cauchy sequences, but not the other way around

(PROVE IT). An example is the sequence yn = 1/n defined on the set of positive real

numbers which converges to zero, but zero does not belong to that metric space. The

problem is that the metric space has a hole. We define now the set of metric spaces

without holes.

Definition: Complete metric space. A metric space (S, d) is complete if every

Cauchy sequence in (S, d) converges to a point in the space. This space is also called

Banach space.

Rmk: The metric space (B,d∞) –where B is the set of continuous and bounded

functions and d∞ is the sup metric– is a complete metric space (PROVE IT).
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Definition: Operator. A function T mapping a metric space into itself is called

an operator.

Definition: Contraction Mapping. Let (S, d) be a complete metric space and

T : (S, d) → (S, d) the associated operator. Then T is said to be a contraction with

modulus β if there is a number β ∈ (0, 1) s.t.

∀ (y1, y2) ∈ (S, d) , d (T (y1), T (y2)) ≤ βd (y1, y2)

Evidently, a contraction “contracts” any two points so that their images are closer

together than the two points were. An example of contraction is the linear function

T : <→ < defined by T (y) = a+ by for |b| < 1 (PROVE IT).
We are now ready to state a theorem which is central in DP analysis.

Banach Fixed Point Theorem (Contraction Mapping Theorem): Let (S, d)

be a complete metric space and let T be a contraction mapping with modulus β. Then,

it follows that:

1. T has a unique fixed point y∗ in S

2. For any y0 ∈ S, the sequence yn+1 = T (yn) started at y0 converges to y∗ in the metric

d.

Proof. See Sargent, pp. 343-344.

This is a very useful theorem because it ensures the existence and uniqueness of a

fixed point under very general conditions and provides through point 2. an algorithm to

compute the fixed point, by simple iteration. We now state a set of sufficient conditions

to recognize a contraction mapping when dealing with particular metric spaces.

Blackwell Sufficient Conditions: Let T be an operator on a metric space (S, d∞)

where S is a space of functions with domain X and d∞ is the sup metric. Then T is a

contraction mapping with modulus β if it has the following properties:

• (monotonicity) For any pair of functions (ψ1,ψ2) ∈ S, ψ1(x) 1 ψ2(x) for all x ⇒
T (ψ1) 1 T (ψ2)
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• (discounting) For any function ψ(x) ∈ S(X), positive real numbers c > 0, and

β ∈ (0, 1), it is true that for any x on which ψ is defined: T (ψ + c) ≤ T (ψ) + βc.

Proof. See Sargent, p. 345.

2.2 The value function in Bellman’s equation as a fixed point of a
contraction

Consider the functional equation in (3):

TΨ (x, z) = max
c∈C(x,z)

{u(x, c) + βE [Ψ(f(x, z, c), z0)]} (4)

which defines a mapping T with domain equal to the space of functions Ψ. Let us

restrict our attention to the space of functions Ψ which are continuous and bounded,

call it B. We can establish two results:

1. Given the assumption on the boundedness of u and Ψ, it is immediate to show that

TΨ is bounded as well.

2. By the Theorem of the Maximum, we obtain that if Ψ is continuous, then TΨ is

continuous as well (just interpret Ψ as Vs−1 and TΨ as Vs).

Now equip the space B with the sup norm d∞. We know that (B,d∞) is a metric

space. Hence the mapping T defined above maps this metric space into itself, and it is

an operator (call it the Bellman’s operator). Being (B,d∞) a complete metric space (as

we have established earlier), we can use Blackwell’s sufficient conditions to check if T is

a contraction mapping. Let’s check both conditions:

• (monotonicity) Take Ψ1 ≥ Ψ2. Then:

TΨ1 = maxc {u(x, c) + βEΨ1(f(x, z, c), z
0)}

≥ maxc {u(x, c) + βEΨ2(f(x, z, c), z
0)}

= TΨ2

• (discounting) For any function ψ, positive real numbers c > 0, and β ∈ (0, 1)
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T (Ψ+ a) = u(x, c∗) + βE [Ψ(f(x, z, c∗), z0) + a]

= u(x, c∗) + βE [Ψ(f(x, z, c∗), z0)] + βa

= TΨ+ βa

It follows that T is a contraction mapping, hence it satisfies Banach fixed point

theorem.

Rmk: We could have proved it by applying directly the definition of contraction

mapping (PROVE IT).

We can therefore use the contraction mapping theorem in characterizing the solution

of the DP problem in infinite horizon. This is extremely useful because we can interpret

the value function of the infinite horizon DP problem in (2) as the fixed point of a

contraction mapping. In particular:

• We know that the infinite horizon Bellman’s equation

V (x, z) = max
c∈C(x,z)

½
u(x, c) + β

Z
Z

V (f(x, z, c), z0)dQ(z0, z)
¾

has a solution V and this solution is unique under general conditions.

• From point 2. of the contraction mapping theorem, we can interpret the infinite

horizon value function as the limit as T →∞ of a finite horizon DP problem.

• Point 2. of the theorem also gives us a useful algorithm to compute the fixed point,

as we can start iterating on (3) from any initial (continuous and bounded) function

Ψ0, and we are certain to converge to the solution V .

• Contractions have the feature of guaranteeing that the fixed point V (weakly) pre-

serves the properties of the functions Ψ on which we iterate, such as monotonicity,

continuity and concavity.

2.3 Characterization of the Policy Function

In the solution of Bellman’s equation:

V (x, z) = maxc∈C(x,z)

©
u(c) + β

R
Z
V (x0, z0)dQ(z0, z)

ª
s.t. x0 = f(x, z, c)
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the fixed point value function V is associated to an optimal policy function c∗ = g∗(x, z).

We now characterize the optimal policy function with the usual methods of calculus, i.e.

by differentiation, like in the static case or in the optimal control problem in continuous

time.

Suppose we can invert the function f to obtain c = ϕ(x0, x, z). Then we substitute

out the control variable in the Bellman’s equation and the choice becomes on the state

next period x0. Hence, the problem becomes:

V (x, z) = max
x0

½
u(x0, x, z) + β

Z
Z

V (x0, z0)dQ(z0, z)
¾

If we knew that V were differentiable, by taking the FOC with respect to x0 we would

obtain:

u1(x
0, x, z)− β

Z
Z

V1(x
0, z0)dQ(z0, z) = 0 (5)

While we are free to make assumptions on u and f , given these assumptions the dif-

ferentiability of V must be established. The following result shown by Bienveniste and

Scheinkman (1979) is useful in this regard.

Envelope Theorem: Let V be a concave function defined on the set X, let x0 ∈ int
X, and let N(x0) be a neighborhood of x0. If there is a concave differentiable function

Ω : N(x0) → < such that Ω(x) ≤ V (x), ∀x ∈ N(x0) with the equality holding at x0,

then V is differentiable at x0 and V1(x0) = Ω1(x0).

Proof. See Stokey-Lucas, p. 85.

Let’s apply this result to the Bellman’s equation. Define:

Ω(x, z) = u(x, g∗(x0, z)) + β

Z
Z

V (f(x0, z, g
∗(x0, z)), z

0)dQ(z0, z)

It follows that Ω(x0, z) = V (x0, z) and ∀x ∈ N(x0):

Ω(x, z) ≤ max
c∈C(x,z)

½
u(x, c) + β

Z
Z

V (f(x, z, c), z0)dQ(z0, z)
¾
= V (x, z)

since g∗(x0, z) is not the optimal policy function for x 6= x0. Assuming that u(·) is
concave and differentiable implies that Ω(x, z) is concave and differentiable as well,

since the integral element is just a constant. We can therefore apply the envelope
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theorem to obtain that:

V1(x, z) = Ω1(x, z) = ux(x, g
∗(x, z))

which tells us that the derivative of the value function is the partial derivative of the

return function with respect to the state variable evaluated at the optimal value for the

control.

We can use this result to substitute out the derivative of the value function from (5)

to obtain:

u1(x
0, x, z)− β

Z
u1(x

0, c0)dQ(z0, z) = 0

If we substitute out next period control through c0 = ϕ(x00, x0, z0), we obtain the Euler

equation:

u1(x
0, x, z)− β

Z
u1(x

0, x00, z0)dQ(z0, z)

To stress that this equation is satisfied by the optimal sequence of states {x∗t}∞t=0, we

can re-express it with time subscripts as:

u1(x
∗
t+1, x

∗
t , zt)− β

Z
u1(x

∗
t+1, x

∗
t+2, zt+1)dQ(zt+1, zt) (6)

This is a second order nonlinear difference equation in the state variable. To be able to

fully characterize the optimal dynamic path of the state {x∗t}∞t=0, we need two boundary

conditions. This conditions are:

• initial condition: x0, z0 given

• transversality condition (TVC): limt→∞ βtux(x
∗
t , c

∗
t )x

∗
t = 0

The latter condition requires that the present discounted value of the state at time

t along the optimal path tends to zero as t goes to infinity. Hence, either the state

variable is small enough in the limit, or its marginal value is small enough.

2.4 Sufficiency of the Euler Equation and TVC

It is possible to prove that if a sequence of states {x∗t}∞t=0 satisfies the Euler equation

and the TVC, then it is optimal for the DP problem. To do so, we will show that
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the difference D between the objective function evaluated at {x∗t}and at {xt}, any
alternative feasible sequence of states, is non-negative. In this particular proof, we

abstract from the stochastic nature of the problem.3

• First, let’s assume concavity and differentiability of the return function u. Then from
concavity it follows that:

D = limT→∞
PT

t=0 β
t
£
u(x∗t , x

∗
t+1)− u(xt, xt+1)

¤
≥ limT→∞

PT
t=0 β

t
£
u1(x

∗
t , x

∗
t+1)(x

∗
t − xt) + u2(x

∗
t , x

∗
t+1)(x

∗
t+1 − xt+1)

¤
• Since x∗0 = x0, given as initial condition, we can rewrite the sum above as:

D ≥ limT→∞
nPT−1

t=0 β
t
£
u2(x

∗
t , x

∗
t+1) + βu1(x

∗
t+1, x

∗
t+2)

¤
(x∗t+1 − xt+1)

+βTu2(x
∗
T , x

∗
T+1)(x

∗
T+1 − xT+1)

ª
• Since the expression in the square brackets [·] satisfies the Euler equation by assump-
tion, each term of the sum is zero. Using the Euler equation (6) to substitute the

last term, we obtain:

D ≥ lim
T→∞

βTu2(x
∗
T , x

∗
T+1)(x

∗
T+1 − xT+1) = − lim

T→∞
βT+1u1(x

∗
T+1, x

∗
T+2)(x

∗
T+1 − xT+1)

• Since u1 > 0 and xT+1 > 0, then:

D ≥ − lim
T→∞

βT+1u1(x
∗
T+1, x

∗
T+2)(x

∗
T+1 − xT+1) 1 − lim

T→∞
βT+1u1(x

∗
T+1, x

∗
T+2)x

∗
T+1

• Using the TVC, we can finally establish that D ≥ 0.

3. The Stochastic Growth Model

Consider the following optimal growth problem, (stated as a social planner problem)

3 This proof is from Stokey-Lucas, pp. 98-99.
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max{ct,it}E0

£P∞
t=0 β

tu(ct)
¤

s.t.

kt+1 = (1− δ) kt + it
f (kt, zt) = ct + it

k0, z0, Q(zt+1, zt) given

Let’s write the recursive formulation of the problem, using the DP techniques:

V (k, z) = max
k0

½
u (f(k, z)− k0 + (1− δ)k) + β

Z
V (k0, z0)dQ(z0, z)

¾
The FOC and the Envelope condition for this problem are respectively:

• (FOC): u1 (f(k, z)− k0 + (1− δ)k) = β
R
V1(k

0, z0)dQ(z0, z)

• (ENV): V1(k, z) = uk (·) = u1 (·) [f1(k, z) + (1− δ)]

Therefore, we obtain the Euler Equation:

u1 (f(k, z)− k0 + (1− δ)k) = β
Z
u1 (f(k

0, z0)− k00 + (1− δ)k0) [1 + f1(k
0, z0)− δ] dQ

which, together with the TVC:

lim
t→∞

βtu1 (·) kt = 0

and the initial condition of the economy (k0, z0) , fully characterize the solution of the

problem.

The Euler equation can be given an intuitive interpretation. It states that the mar-

ginal utility of consumption this period, along the optimal path, must be equal to the

discounted expected marginal utility of consumption next period accounting for the fact

that postponing consumption by one period will increase consumption tomorrow by the

rate of return on capital net of depreciation.
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