
Dynamic Programming: An overview

Russell Cooper

February 14, 2001

1 Overview
The mathematical theory of dynamic programming as a means of solving dynamic

optimization problems dates to the early contributions of Bellman [1957] and Bertsekas
[1976]. For economists, the contributions of Sargent [1987] and Stokey-Lucas [1989]
provide a valuable bridge to this literature.

2 Indirect Utility
Intuitively, the approach of dynamic programming can be understood by recalling

the theme of indirect utility from basic static consumer theory or a reduced form profit
function generated by the optimization of a firm. This reduced form representations of
payoffs summarizes information about the optimized value of the choice problems faced by
households and firms. As we shall see, the theory of dynamic programming uses this insight
in a dynamic context.

2.1 Consumers

Consumer choice theory focuses on households who solve:

V (I, p) = max
c
u(c) subject to: pc = I

where c is a vector of consumption goods, p is a vector of prices and I is income.1 The first
order condition is given by

uj(c)/pj = λ for j = 1, 2...J .
where λ is the multiplier on the budget constraint and uj(c) is the marginal utility from good
j.
Here V (I, p) is an indirect utility function. It is the maximized level of utility from the

current state (I, p). So if someone is in this state, you can predict that they will attain this
level of utility. You do not need to know what they will do with their income; it is enough to
know that they will act optimally. This is very powerful logic and underlies the idea behind

1 Assume that there are J commodities in this economy. This presentation assumes that
you understand the conditions under which this optimization problem has a solution
and when that solution can be characterized by first-order conditions.

1

the dynamic programming models studied below.
To illustrate, what happens if we give the consumer a bit more income? Welfare goes up

by VI(I, p) > 0. Can I predict what will happen with a little more income? Not really since
the optimizing consumer is indifferent with respect to how this is spent:

uj(c)/pj = VI(I, p) for all j.
It is in this sense that the indirect utility function summarizes the value of the households
optimization problem and allows us to determine the marginal value of income without
knowing further details about consumption functions.
Is this all we need to know about household behavior? No, this theory is static and thus

ignores savings, spending on durable goods as well as uncertainty over the future. We will
return to these in later chapters on the dynamic behavior of households. The point here was
simply to recall a key object from optimization theory: the indirect utility function.

2.2 Firms

Suppose that a firm chooses how many workers to hire at a wage of w given its stock of
capital, k. Thus the firm solves:

Π(w, k) = max
l
pf(l, k)−wl.

This will yield a labor demand function which depends on (w, k). As with V (I, p), Π(w, k)
summarizes the value of the firm given factor prices and the stock of capital, k. Both the
flexible and fixed factors could be vectors. Think of Π(w, k) as an indirect profit function.
As with the households problem, given Π(w, k),we can directly compute the marginal

value of giving the firm some additional capital as Πk(w, k)=pfk(l, k) without knowing how
the firm will adjust its labor input in response to the additional capital.
But, is this all there is to know about the firm’s behavior? Surely not as we have not

specified where k comes from. So the firm’s problem is essentially dynamic though the
demand for some of its inputs can be taken as a static optimization problem. These are
important themes in the theory of factor demand and we will return to them in our firm
applications.

3 Dynamic Optimization: A Cake Eating Example
Here we will look at a very simple dynamic optimization problem. We begin with a finite

horizon and then discuss extensions to the infinite horizon.2
Suppose that you have a cake of sizeW1. At each point of time, t = 1, 2, 3,T you

can consume some of the cake and thus save the remainder. Let ct be your consumption
in period t and let u(ct) represent the flow of utility from this consumption. The utility
function is not indexed by time: preferences are stationary. Assume u(·) is real-valued,
differentiable, strictly increasing and strictly concave. Assume that limc−→0 u0(c) → ∞.
Represent lifetime utility by
2 For a very complete treatment of the finite horizon problem with uncertainty, see Bertsekas [1976, Ch. 2].

2

TX
t=1

β(t−1)u(ct)

where 0≤ β ≤ 1 and β is called the discount factor. A related concept is the discount rate
defined as β−1.
For now, assume that the cake does not depreciate (melt) or grow. Hence, the evolution

of the cake over time is governed by:

Wt+1 =Wt − ct (1)
for t = 1, 2, ..T . How would you find the optimal path of consumption, {ct}T1 ?

3.1 Direct Attack

One approach is to solve the constrained optimization problem directly. This is called the
sequence problem by Stokey-Lucas [1989]. Consider the problem of:

max
{ct}T1 ,{Wt}T+12

TX
t=1

β(t−1)u(ct) (2)

subject to the transition equation (1) which holds for t = 1, 2, 3,T. Also, there are
non-negativity constraints on consumption and the cake given by: ct ≥ 0 andWt ≥ 0. For
this problem,W1 is given.
Alternatively, the flow constraints imposed by (1) for each t could be combined yielding:

TX
t=1

ct +WT+1 =W1. (3)

The non-negativity constraints are simpler: ct ≥ 0 for t = 1, 2, ..T and WT+1 ≥ 0. For
now, we will work with the single resource constraint. This is a well-behaved problem as the
objective is concave and continuous and the constraint set is compact. So there is a solution
to this problem.3
Letting λ be the multiplier on (3), the first order conditions are given by:

βt−1u0(ct) = λ

for t = 1, 2, ..., T and

λ = φ

where φ is the non-negativity constraint onWT+1. The non-negativity constraints on ct ≥ 0
are ignored as we assume that the marginal utility of consumption becomes infinite as
consumption approaches zero within any period.
Combining equations, we obtain an equation that links consumption across any two

periods:

3 This comes from the Weierstrass theorem. See Bertsekas, [1976, Appendix B] or Stokey-Lucas [1989, Ch. 3]
for a discussion.

3

u0(ct) = βu0(ct+1). (4)
This is a necessary condition for optimality for any t: if it was violated, the agent could do
better by adjusting ct and ct+1. Frequently (4) is referred to as an Euler equation.
To understand this condition, suppose that you have a proposed (candidate) solution

for this problem given by {c∗t}T1 , {W ∗
t }T+12 . Essentially, the Euler equation says that the

marginal utility cost of reducing consumption by ε in period t equals the marginal utility
gain from consuming the extra ε of cake in the next period, which is discounted by β. If the
Euler equation holds, then it is impossible to increase utility by moving consumption across
adjacent periods given a candidate solution.
It should be clear though that this condition may not be sufficient: it does not cover

deviations that last more than one period. For example, could utility be increased by
reducing consumption by ε in period t saving the ”cake” for two periods and then increasing
consumption in period t+2? Clearly this is not covered by a single Euler equation. However,
by combining the Euler equation that hold across period t and t + 1 with that which holds
for periods t+ 1 and t+ 2, we can see that such a deviation will not increase utility. This is
simply because the combination of Euler equations implies:

u0(ct) = β2u0(ct+2)

so that the two-period deviation from the candidate solution will not increase utility.
As long as the problem is finite, the fact that the Euler equation holds across all adjacent

periods implies that any finite deviations from a candidate solution that satisfies the Euler
equations will not increase utility. Is this enough? Not quite. Imagine a candidate solution
that satisfies all of the Euler equations but has the property thatWT > cT so that there is
cake left over. This is clearly an inefficient plan: having the Euler equations holding is
necessary but not sufficient. Hence the optimal solution will satisfy the Euler equation for
each period and the agent will consume the entire cake!
Formally, this involves showing the non-negativity constraint on WT+1 must bind.

In fact, this constraint is binding in the above solution: λ = φ > 0. This non-negativity
constraint serves two important purposes. First, in the absence of a constraint that
WT+1 ≥ 0, the agent would clearly want to setWT+1 = −∞ and thus die with outstanding
obligations. This is clearly not feasible. Second, the fact that the constraint is binding in the
optimal solution guarantees that cake is not being thrown away after period T .
So, in effect, the problem is pinned down by an initial condition (W1 is given) and by a

terminal condition (WT+1 = 0). The set of (T − 1) Euler equations and (3), then determine
the time path of consumption.
Let the solution to this problem be denoted by VT (W1) where T is the horizon of the

problem andW1 is the initial size of the cake. VT (W1) represents the maximal utility flow
from a T period problem given a sizeW1 cake. From now on, we call this a value function.
This is completely analogous to the indirect utility functions expressed for the household
and the firm.
As in those problems, a slight increase in the size of the cake leads to an increase in

4

lifetime utility equal to the marginal utility in any period. That is,
V 0T (W1) = λ = β

t−1u0(ct), t = 1, 2, ...T.

It doesn’t matter when the extra cake is eaten given that the consumer is acting optimally.
This is analogous to the point raised above about the effect on utility of an increase in
income in the consumer choice problem with multiple goods.

3.2 Dynamic Programming Approach

Suppose that we change the above problem slightly: we add a period 0 and give an initial
cake of size W0. One approach to determining the optimal solution of this augmented
problem is to go back to the sequence problem and resolve it using this longer horizon and
new constraint. But, having done all of the hard work with the T period problem, it would be
nice not to have to do it again!

3.2.1 Finite Horizon Problem

The dynamic programming approach provides a means of doing so. It essentially converts a
(arbitrary) T period problem into a 2 period problem with the appropriate rewriting of the
objective function. In doing so, it uses the value function obtained from solving a shorter
horizon problem.
So, when we consider adding a period 0 to our original problem, we can take advantage

of the information provided in VT (W1), the solution of the T period problem givenW1 from
(2). GivenW0, consider the problem of

max
c0
u(c0) + βVT (W1) (5)

where
W1 =W0 − c0;W0 given.

In this formulation, the choice of consumption in period 0 determines the size of the
cake that will available starting in period 1, W1. So instead of choosing a sequence of
consumption levels, we are just choosing c0. Once c0 and thusW1 are determined, the value
of the problem from then on is given by VT (W1). This function completely summarizes
optimal behavior from period 1 onwards. For the purposes of the dynamic programming
problem, it doesn’t matter how the cake will be consumed after the initial period. All that
is important is that the agent will be acting optimally and thus generating utility given by
VT (W1). This is the principle of optimality, due to Richard Bellman, at work. With this
knowledge, an optimal decision can be made regarding consumption in period 0.
Note that the first order condition (assuming that VT (W1) is differentiable) is given by:

u0(c0) = βV 0T (W1)

so that the marginal gain from reducing consumption a little in period 0 is summarized
by the derivative of the value function. As noted in the earlier discussion of the T period
sequence problem,

5

V 0T (W1) = u
0(c1) = βtu0(ct+1)

for t = 1, 2, ..T − 1. Using these two conditions together yields
u0(ct) = βu0(ct+1),

for t = 0, 1, 2, ...T − 1, a familiar necessary condition for an optimal solution.
Since the Euler conditions for the other periods underlie the creation of the value

function, one might suspect that the solution to the T + 1 problem using this dynamic
programming approach is identical to that from using the sequence approach.4 This is clearly
true for this problem: the set of first order conditions for the two problems are identical and
thus, given the strict concavity of the u(c) functions, the solutions will be identical as well.
The apparent ease of this approach though is a bit misleading. We were able to make

the problem look simple by pretending that we actually knew VT (W1). Of course, we had
to solve for this either by tackling a sequence problem directly or by building it recursively
starting from an initial single period problem.
On this latter approach, we could start with the single period problem implying V1(W1).

We could then solve (5) to build V2(W1) for any T. Given this function, we could move to a
solution of the T + 3 problem and proceed iteratively.

3.2.2 Example

We illustrate the construction of the value function in a specific example. Assume
u(c) = ln(c). Suppose that T = 1. Then V1(W1) = ln(W1).
For T = 2, the first order condition from (2) is

1/c1 = β/c2

and the resource constraint is
W1 = c1 + c2.

Working with these two conditions:

c1 =W1/(1 + β) and c2 = βW1/(1 + β).

From this, we can solve for the value of the 2-period problem:

V2(W1) = ln(c1) + β ln(c2) = A2 +B2 ln(W1) (6)
where A2 and B2 are constants associated with the two period problem. These constants are
given by:

A2 = ln(1/(1 + β) + β ln(β/(1 + β)) B2 = (1 + β)

Importantly, (6) does not include the max operator as we are substituting the maximized
values into that value function.
Using this function, the T = 3 problem can then be written as:

4 By the sequence approach, we mean solving the problem using the direct approach outlined in the previous
section.

6

V3(W1) = max
W2

ln(W1 −W2) + βV2(W2)

where the choice variable is the state in the subsequent period. The first order condition is:
1

c1
= βV 02(W2).

Using (6) evaluated at a cake of sizeW2, we can solve for V 02(W2) implying:
1

c1
= β

B2
W2

=
β

c2
.5

Further, we know from the 2-period problem that
1/c2 = β/c3.

This plus the resource constraint allows us to construct the solution of the 3-period problem:

c1 =W1/(1 + β + β
2), c2 = βW1/(1 + β + β

2), c3 = β
2W1/(1 + β + β

2).

Substituting into V3(W1) yields

V3(W1) = A3 +B3 ln(W1)

where
A3 = ln(1/(1+β+β

2)+β ln(β/(1+β+β2))+β2 ln(β2/(1+β+β2)), B3 = (1+β+β
2)

This solution can be verified from a direct attack on the 3 period problem using (2) and (3).

4 Some Extensions of the Cake Eating Problem
Here we go beyond the T period problem to illustrate some ways to use the dynamic

programming framework. This is intended as an overview and the details of the assertions
and so forth will be provided below.

4.1 Infinite Horizon

4.1.1 Basic Structure

Suppose that we consider the above problem and allow the horizon to go to infinity. As
before, one can consider solving the infinite horizon sequence problem given by:

max
{ct}∞1 ,{Wt}∞2

∞X
t=1

βtu(ct)

along with the transition equation of

Wt+1 =Wt − ct
5 Here c2 the consumption level in the second period of the three-period problem and thus is the same as the
level of consumption in the first period of the two-period problem.

7

for t=1,2,......
Specifying this as a dynamic programming problem,

V (W) = max
c∈[0,W]

u(c) + βV (W − c)

for all W . Here u(c) is again the utility from consuming c units in the current period.
V (W) is the value of the infinite horizon problem starting with a cake of sizeW . So in
the given period, the agent chooses current consumption and thus reduces the size of the
cake toW 0 =W − c, as in the transition equation. We use variables with primes to denote
future values. The value of starting the next period with a cake of that size in then given by
V (W − c) which is discounted at rate β < 1.
For this problem, the state variable is the size of the cake (W) that is given at the start of

any period. The state completely summarizes all information from the past that is needed for
the forward looking optimization problem. The control variable is the variable that is being
chosen. In this case, it is the level of consumption in the current period, c. Note that c lies
in a compact set. The dependence of the state tomorrow on the state today and the control
today, given by

W 0 =W − c
is called the transition equation.
Alternatively, we can specify the problem so that instead of choosing today’s

consumption we choose tomorrow’s state.

V (W) = max
W 0∈[0,W]

u(W −W 0) + βV (W 0) (7)

for allW . Either specification yields the same result. But choosing tomorrow’s state often
makes the algebra a bit easier so we will work with (7).
This expression is known as a functional equation and is often called a Bellman

equation after Richard Bellman, one of the originators of dynamic programming. Note
that the unknown in the Bellman equation is the value function itself: the idea is to find a
function V (W) that satisfies this condition for allW . Unlike the finite horizon problem,
there is no terminal period to use to derive the value function. In effect, the fixed point
restriction of having V (W) on both sides of (7) will provide us with a means of solving the
functional equation.
Note too that time itself does not enter into Bellman’s equation: we can express all

relations without an indication of time. This is the essence of stationarity.6 In fact, we will
ultimately use the stationarity of the problem to make arguments about the existence of a
value function satisfying the functional equation.
A final very important property of this problem is that all information about the past that

bears on current and future decisions is summarized byW , the size of the cake at the start
of the period. Whether the cake is of this size because we initially had a large cake and ate
a lot or a small cake and were frugal is not relevant. All that matters is that we have a cake
of a given size. This property partly reflects the fact that the preferences of the agent do not
6 As you may already know, stationarity is vital in econometrics as well. Thus making assumptions of
stationarity in economic theory have a natural counterpart in empirical studies. In some cases, we will have to
modify optimization problems to ensure stationarity.

8

depend on past consumption. But, in fact, if this was the case, we could amend the problem
to allow this possibility.
The next part of this chapter addresses the question of whether there exists a value

function that satisfies (7). For now, we assume that a solution exists and explore its
properties.
The first order condition for the optimization problem in (7) can be written as

u0(c) = βV 0(W 0).

This looks simple but what is the derivative of the value function? This seems particularly
hard to answer since we do not know V (W). However, we take use the fact that
V (W)satisfies (7) for allW . Assuming that this value function is differentiable,

V 0(W) = u0(c),

a result we have seen before. Since this holds for allW , it will hold in the following period
yielding:

V 0(W 0) = u0(c0).

Substitution leads to the usual Euler equation:

u0(c) = βu0(c0).

Thus the solution to the cake eating problem will satisfy this necessary condition for allW .
The link from the level of consumption and next period’s cake (the controls from the

different formulations) to the size of the cake (the state) is given by the policy function:

c = φ(W), W 0 = ϕ(W) ≡W − φ(W).
Using these in the Euler equation reduces the problem to these policy functions alone:

u0(φ(W)) = βu0(φ(W − φ(W)))
for allW .

4.1.2 An Example

In general, actually finding closed form solutions for the value function and the resulting
policy functions is not possible. In those cases, we try to characterize certain properties of
the solution and, for some exercises, we solve these problems numerically.
However, as suggested by the analysis of the finite horizon examples, there are some

versions of the problem we can solve completely. Suppose then, as above, that u(c) = ln(c).
Given the results for the T-period problem, we might conjecture that the solution to the
functional equation takes the form of:

V (w) = A+B ln(W)

for allW . With this guess we have reduced the dimensionality of the unknown function
V (W) to two parameters, A and B. But can we find values for A and B such that V (W)
will satisfy the functional equation?
Taking this guess as given and using the special preferences, the functional equation

9

becomes:

A+B ln(W) = max
W 0

ln(W −W 0) + β(A+B ln(W 0)) (8)
for allW . After some algebra, the first-order condition implies:

W 0 = ϕ(W) =
βB

(1 + βB)
W.

Using this in (8) implies:

A+B ln(W) = ln
W

(1 + βB)
+ β(A+B ln(

βBW

(1 + βB)
))

for allW . Collecting terms into a constant and terms that multiply ln(W) and then imposing
the requirement that the functional equation must hold for allW , we find that

B = 1/(1− β)
is required for a solution. Given this, there is a complicated expression that can be used to
find A. To be clear then we have indeed guessed a solution to the functional equation. We
know that because we can solve for (A,B) such that the functional equation holds for allW
using the optimal consumption and savings decision rules.
With this solution, we know that

c =W (1− β),W 0 = βW.

Evidently, the optimal policy is to save a constant fraction of the cake and eat the remaining
fraction.
Interestingly, the solution to B could be guessed from the solution to the T-horizon

problems where

BT =
TX
t=1

βt−1.

Evidently, B = limT→∞BT . In fact, we will be exploiting the theme that the value function
which solves the infinite horizon problem is related to the limit of the finite solutions in
much of our numerical analysis.

4.1.3 Exercises

Here are some exercises that add some interesting elements to this basic structure.

Exercise 1: Suppose that utility in period t was given by u(ct, ct−1). How would
you solve the T period problem with these preferences? Interpret the first order
conditions. How would you formulate the Bellman equation for the infinite horizon
version of this problem?
Exercise 2: Suppose that the transition equation was modified so that

Wt+1 = ρWt − ct
where ρ > 0 represents a return from the holding of cake inventories. How would
you solve the T period problem with this storage technology? Interpret the first order

10

conditions. How would you formulate the Bellman equation for the infinite horizon
version of this problem? Does the size of ρ matter in this discussion? Explain.

4.2 Taste Shocks

One of the convenient features of the dynamic programming problem is the simplicity with
which one can introduce uncertainty.7 For the cake eating problem, the natural source of
uncertainty has to do with the agent’s tastes. In other settings we will focus on other sources
of uncertainty having to do with the productivity of labor or the endowment of households.
To allow for variations in tastes, suppose that utility over consumption is given by:

εu(c)

where ε is a random variable whose properties we will describe below. The function u(c) is
strictly increasing and strictly concave. Otherwise, the problem is the original cake eating
problem with an initial cake of sizeW .
In problems with stochastic elements, it is critical to be precise about the timing of

events. Does the optimizing agent know the current shocks when making a decision? For
this analysis, assume that the agent knows the value of the taste shock when making current
decisions but does not know future values. Thus the agent must use expectations of future
values of ε when deciding how much cake to eat today: it may be optimal to consume less
today (save more) in anticipation of a high realization of ε in the future.
For simplicity, assume that the taste shock takes on only two values: ε ∈ {εh, εl} with

εh > εl > 0. Further, we assume that the taste shock follows a first -order Markov process
which means that the probability a particular realization of ε occurs in the current period
depends only the value of ε attained in the previous period.8 For notation, let πij denote the
probability that the value of ε goes from state i in the current period to state j in the next
period. For example, πlh is given by:

πlh ≡ Prob(ε0 = εh|ε = εl)
where ε0 refers to the future value of ε. Clearly πih + πil = 1 for i = h, l. Let Π be a 2x2
matrix with a typical element πij which summarizes the information about the probability
of moving across states. This matrix is naturally called a transition matrix.
Given this notation and structure, we can turn to the cake eating problem. It is critical

to carefully define the state of the system for the optimizing agent. In the nonstochastic
problem, the state was simply the size of the cake. This provided all the information the
agent needed to make a choice. When taste shocks are introduced, the agent needs to take
this into account as well. In fact, the taste shocks provide information about current payoffs
and, through the Π matrix, are informative about the future value of the taste shock as well.
Formally, Bellman equation is:

7 To be careful, here we are adding shocks that take values in a finite and thus countable set. See the discussion
in Bertsekas [1976, 2.1] for an introduction to the complexities of the problem with more general statements of
uncertainty.
8 The evolution can also depend on the control of the previous period. Note too that by appropriate rewriting of
the state space, richer specifications of uncertainty can be encompassed.

11

V (W, ε) = max
W 0

εu(W −W 0) + βEε0|εV (W 0, ε0)

for all (W, ε) whereW 0 =W − c as usual. Note that the conditional expectation is denoted
here by Eε0|εV (W 0, ε0) which, given Π, is something we can compute.
The first order condition for this problem is given by:

εu0(W −W 0) = βEε0|εV1(W 0, ε0)

for all (W, ε). Using the functional equation to solve for the marginal value of cake, we find:

εu0(W −W 0) = βEε0|ε[ε0u0(W 0 −W 00)] (9)
which, of course, is the stochastic Euler equation for this problem.
The optimal policy function is given by

W 0 = ϕ(W, ε)

The Euler equation can be rewritten in these terms as:

εu0(W − ϕ(W, ε)) = βEε0|ε[ε0u0(ϕ(W, ε)− ϕ(ϕ(W, ε), ε0)))]
The properties of this policy function can then be deduced from this condition. Clearly both
ε0 and c0 depend on the realized value of ε0 so that the expectation on the right side of (9)
cannot be split into two separate pieces.

4.3 Discrete Choice

To illustrate some of the flexibility of the dynamic programming approach, we build on this
stochastic problem and suppose the cake must be eaten in one period. Perhaps we should
think of this as the wine drinking problem recognizing that once a good bottle of wine is
opened, it should be consumed! Further, we modify the transition equation to allow the cake
to grow (depreciate) at rate ρ.
The problem is then an example of a dynamic, stochastic discrete choice problem. This

is an example of a family of problems called optimal stopping problems. The common
element in all of these problems is the emphasis on timing of a single event: when to eat the
cake; when to take a job; when to stop school, when to stop revising a chapter, etc. In fact,
for many of these problems, these choices are not once in a lifetime events and so we will be
looking at problems even richer than the optimal stopping variety.
Let V E(W, ε) and V N(W, ε) be the value of eating the sizeW cake now (E) and waiting

(N) respectively given the current taste shock, ε ∈ {εh, εl}. Then,
V E(W, ε) = εu(W)

and
V N(W) = βEε0|εV (ρW, ε0).

where
V (W, ε) = max(V E(W, ε), V N(W, ε)).

12

To understand these terms, εu(W) is the direct utility flow from eating the cake. Once the
cake is eaten the problem has ended. So V E(W, ε) is just a one-period return. If the agent
waits, then there is no cake consumption in the current period and next period the cake is of
size (ρW). As tastes are stochastic, then the agent choosing to wait must take expectations
of the future taste shock, ε0. The agent has an option next period of eating the cake or waiting
further. Hence the value of having the cake in any state is given by V (W, ε), which is the
value attained by maximizing over the two options of eating or waiting. The cost of delaying
the choice is determined by the discount factor β while the gains to delay are associated
with the growth of the cake, parameterize by ρ. Further, the realized value of ε will surely
influence the relative value of consuming the cake immediately.
If ρ ≤ 1, then the cake doesn’t grow. In this case, there is no gain from delay when

ε = εh. If the agent delays, then utility in the next period will have to be lower due to
discounting and, with probability πhl, the taste shock will switch from low to high. So,
waiting to eat the cake in the future will not be desirable. Hence,

V (W, εh) = V
E(W, εh) = εhu(W)

for allW .
In the low ε state, matters are more complex. If β and ρ are sufficiently close to 1 then

there is not a large cost to delay. Further, if πlh is sufficiently close to 1, then it is likely
that tastes will switch from low to high. Thus it will be optimal not to eat the cake in state
(W, εl).9
Here are some additional exercises.

Exercise 3: Suppose that ρ = 1. For a given β, show that there exists a critical level
of πlh,denoted by π̄lh such that if πlh > π̄lh,then the optimal solution is for the agent
to wait when ε = εl and to eat the cake when εh is realized.

When ρ > 1,the problem is more difficult. Suppose that there are no variations in tastes:
εh = εl = 1. In this case, there is a trade-off between the value of waiting (as the cake
grows) and the cost of delay from discounting.

Exercise 4: Suppose that ρ > 1 and u(c) = c1−γ
1−γ .What is the solution to the optimal

stopping problem when βρ1−γ < 1? What happens if βρ1−γ > 1?What happens
when uncertainty is added.

5 General Formulation
Building on the intuition gained from this discussion of the cake eating problem, we

now consider a more formal abstract treatment of the dynamic programming approach.10

9 In the following chapter on the numerical approach to dynamic programming, we study this case in
considerable detail.
10 This section is intended to be self-contained and thus repeats some of the material from the earlier examples.
Our presentation is by design not as formal as say that provided in Bertsekas [1976] or Stokey-Lucas [1989]. The
reader interested in more mathematical rigor is urged to review those texts and their many references.

13

We begin with a discussion of the non-stochastic problem and then add uncertainty to the
formulation.

5.1 Non-Stochastic Case

Consider the infinite horizon optimization problem of an agent with a payoff function for
period t given by σ̃(st, ct). The first argument of the payoff function is termed the state
vector, (st). As noted above, this represents a set of variables that influences the agent’s
return within the period but, by assumption, these variables are outside of the agent’s control
within period t. The state variables evolve over time in a manner that may be influenced
by the control vector (ct), the second argument of the payoff function. The connection
between the state variables over time is given by the transition equation:

st+1 = τ(st, ct).

So, given the current state and the current control, the state vector for the subsequent period
is determined.
Note that the state vector has a very important property: it completely summarizes all

of the information from the past that is needed to make a forward-looking decision. While
preferences and the transition equation are certainly dependent on the past, this dependence
is represented by st : other variables from the past do not affect current payoffs or constraints
and thus cannot influence current decisions. This may seem restrictive but it is not: the
vector st may include many variables so that the dependence of current choices on the past
can be quite rich.
While the state vector is effectively determined by preferences and the transition

equation, the researcher has some latitude in choosing the control vector. That is, there may
be multiple ways of representing the same problem with alternative specifications of the
control variables.
We assume that c ∈ C and s ∈ S. In some cases, the control is restricted to be in subset

of C which depends on the state vector: c ∈ C(s). Finally assume that σ̃(s, c) is bounded
for (s, c) ∈ SxC.11
For the cake eating problem described above, the state of the system was the size of the

current cake (Wt) and the control variable was the level of consumption in period t, (ct).
The transition equation describing the evolution of the cake was given by

Wt+1 =Wt − ct.
Clearly the evolution of the cake is governed by the amount of current consumption. An
equivalent representation, as expressed in (7), is to consider the future size of the cake as the
control variable and then to simply write current consumption asWt+1 −Wt.
There are two final properties of the agent’s dynamic optimization problem worth

specifying: stationarity and discounting. Note that neither the payoff nor the transition
equations depend explicitly on time. True the problem is dynamic but time per se is not
of the essence. The optimal choice of the agent will be the same regardless of when he

11 Ensuring that the problem is bounded is an issue in some economic applications, such as the growth model.
Often these problems are dealt with by bounding the sets C and S.

14

optimizes. Stationarity is important both for the analysis of the optimization problem and
for empirical implementation. In fact, because of stationarity we can dispense with time
subscripts as the problem is completely summarized by the current values of the state
variables.
The agent’s preferences are also dependent on the rate at which the future is discounted.

Let β denote the discount factor and assume that 0 < β < 1. Then we can represent the
agent’s payoffs over the infinite horizon as

t=∞X
t=0

βtσ̃(st, ct) (10)

One approach to optimization is then to maximize (10) through the choice of {ct} for
t = 0, 1, 2, ... given s0 and subject to the transition equation. Let V (s0) be the optimized
value of this problem given the initial state.
Alternatively, one can adopt the dynamic program approach and consider the following

equation, called Bellman’s equation:

V (s) = max
c∈C(s)

σ̃(s, c) + βV (s0) (11)

for all s ∈ S, where s0 = τ(s, c). Here time subscripts are eliminated, reflecting the
stationarity of the problem. Instead, current variables are unprimed while future ones are
denoted by a prime (0).
Alternatively, as in Stokey-Lucas [1989], the problem can be formulated as

V (s) = max
s0∈Γ(s)

σ(s, s0) + βV (s0) (12)

This is a more compact formulation and we will use it for our presentation.12 Nonetheless,
the presentations in Bertsekas [1976] and Sargent [1987] follow (11). Assume that S is a
convex subset of <k.
Let the policy function that determines the optimal value of the control (the future state)

given the state be given by s0 = φ(s). Our interest is ultimately in the policy function
since we generally observe the actions of agents rather than their levels of utility. Still, to
determine φ(s) we need to ”solve” (12). That is, we need to find the value function that
satisfies (12). It is important to realize that while the payoff and transition equations are
primitive objects that models specify a priori, the value function is derived as the solution of
the functional equation, (12)
There are many results in the lengthy literature on dynamic programming problems on

the existence of a solution to the functional equation. Here, we present one set of sufficient
conditions. The reader is referred to Bertsekas [1976], Sargent [1987] and Stokey-Lucas
[1989] for additional theorems under alternative assumptions about the payoff and transition
functions.13

12 Essentially, this formulation inverts the transition equation and substitutes for c in the objective function. This
substitution is reflected in the alternative notation for the return function.
13 Some of the applications explored in this book will not exactly fit these conditions either. In those cases, we
will alert the reader and discuss the conditions under which there exists a solution to the functional equation.

15

Theorem 1 Assume σ(s, c) is real-valued, continuous and bounded, 0 < β < 1 and the
constraint set is non-empty, compact-valued and continuous, then there exists a unique value
function V (s) that solves (12)

Proof: See Stokey-Lucas [1989, Theorem 4.6].
Instead of a formal proof, we give an intuitive sketch. The key component in the analysis

is the definition of an operator, commonly denoted as T, defined by:

T (W)(s) = max
s0∈Γ(s)

σ(s, s0) + βW (s0) for all s ∈ S.14

So, this mapping takes a guess on the value function and, working through the maximization
for all s, produces another value function, T (W)(s). Clear, any V (s) such that
V (s) = T (V)(s) for all s ∈ S is a solution to (12). So, we can reduce the analysis to
determining the fixed points of T (W).
The fixed point argument proceeds by showing the T (W) is a contraction using a pair

of sufficient conditions from Blackwell [1965]. This implies that: (i) there is a unique fixed
point and (ii) this fixed point can be reached by an iteration process using an arbitrary initial
condition. The first property is reflected in the theorem given above and the second is used
extensively as a means of finding the solution to (12).15
Blackwell’s conditions are: (i) monotonicity and (ii) discounting of the mapping T (V).

Monotonicity means that if W (s) ≥ Q(s) for all s ∈ S, then T (W)(s) ≥ T (Q)(s) for
all s ∈ S. This property can be directly verified from the fact that T (V) is generated by a
maximization problem. So that if one adopts the choice of cQ(s) obtained from

max
s0∈Γ(s)

σ(s, s0) + βQ(s0) for all s ∈ S.

When the proposed value function isW (s) then:

T (W)(s) = max
s0∈Γ(s)

σ(s, s0) + βW (s0) ≥ σ(s, cQ(s)) + βW (cQ(s))
≥ σ(s, cQ(s)) + βQ(cQ(s)) ≡ T (Q)(s)

for all s ∈ S.
Discounting means that adding a constant toW leads T (W) to increase by less than this

constant. That is, for any constant k, T (W + k)(s) ≤ T (W)(s) + βk for all s ∈ S where
β ∈ [0, 1). The term discounting reflects the fact that β must be less than 1. This property is
easy to verify in the dynamic programming problem:

T (W + k) = max
s0∈Γ(s)

σ(s, s0) + β[W (s0) + k] = T (W) + βk, for all s ∈ S
since we assume that the discount factor is less than 1.
Besides these properties, there are two other points of note concerning this application

of the contraction mapping theorem. First, this theorem not only implies the existence of a
unique solution to (12) but also provides a way to find such a solution. Let V0(s) for all for
all s ∈ S be an initial guess of the solution to (12). Consider V1 = T (V0). If V1 = V0 for all
14 The notation dates back at least to Bertsekas [1976].
15 Bertsekas proves a version of this theorem directly though his proof uses monotonicity and discounting.

16

s ∈ S,then we have the solution. Else, consider V2 = T (V1) and continue until T (V) = V
so that the functional equation is satisfied. Of course, in general, there is no reason to think
that this iterative process will converge. However, if T (V) is a contraction, as it is for our
dynamic programming framework, then the V (s) that satisfies (12) can be found from the
iteration of T (V0(s)) for any initial guess, V0(s). This procedure is called value function
iteration and will be a valuable tool for applied analysis of dynamic programming problems.
The second property of immense value is that the value function that satisfies (12)

may inherit some properties from the more primitive functions that are the inputs into the
dynamic programming problem: the payoff and transition equations. As we shall see, the
property of strict concavity is useful for various applications.16 The result is given formally
by:

Theorem 2 Assume σ(s, s0) is real-valued, continuous, concave and bounded, 0 < β < 1,
S is a convex subset of <kand the constraint set is non-empty, compact-valued, convex and
continuous, then the unique solution to (12) is strictly concave. Further, φ(s) is a continuous,
single-valued function.

Proof: See Theorem 4.8 in Stokey-Lucas [1989].
The proof of the theorem relies on showing that strict concavity is preserved by T (V) :

i.e. if V (s) is strictly concave, then so is T (V (s)). Given that σ(s, c) is concave, then we
can let our initial guess of the value function be the solution to the one-period problem:

V0(s) ≡ max
s0∈Γ(s)

σ(s, s0)

which will be strictly concave. Since T (V) preserves this property then the solution to (12)
will be strictly concave.
As noted earlier, our interest is in the policy function. Note that from this theorem,

there is a stationary policy function which depends only on the state vector. This result is
important for econometric application since stationarity is often assumed in characterizing
the properties of various estimators.
The cake eating example relied on the Euler equation to determine some properties of

the optimal solution. However, the first-order condition from (12) combined with the strict
concavity of the value function is useful in determining properties of the policy function.
Benveniste and Schienkman [1979] provide conditions such that V (s) is differentiable
(Stokey-Lucas [1989], Theorem 4.11). In our discussion of applications, we will see
arguments that use the concavity of the value function to characterize the policy function.

5.2 Stochastic Dynamic Programming

While the nonstochastic problem is perhaps a natural starting point, in terms of applications
it is necessary to consider stochastic elements. Clearly the stochastic growth model,
consumption/savings decisions by households, factor demand by firms, pricing decisions by
sellers, search decisions all involve the specification of dynamic stochastic environments.
16 Define σ(s, s0) as concave if σ(λ(s1, s01) + (1− λ)(s2, s02)) ≥ λσ(s1, s01) + (1− λ)σ(s2, s02) for all
0 < λ < 1 where the inequality is strict if s1 6= s2.

17

While stochastic elements can be added in many ways to dynamic programming
problems, we consider the following formulation which is used in our applications. Letting
ε represent the current value of a vector of ”shocks”; i.e. random variables that are partially
determined by nature. Let ε ∈ Ψ which is assumed to be a finite set.17 Then using the
notation developed above, the functional equation becomes:

V (s, ε) = max
s0∈Γ(s,ε)

σ(s, s0, ε) + βEε0|εV (s0, ε0) (13)

for all (s, ε).
Further, we have assumed that the stochastic process itself is purely exogenous as the

distribution of ε0 depends on ε but is independent of the current state and control. Note too
that the distribution of ε0 depends on only the realized value of ε : i.e. ε follows a first-order
Markov process. This is not restrictive in the sense that if values of shocks from previous
periods were relevant for the distribution of ε0, then they could simply be added to the state
vector.
Finally, note that the distribution of ε0|ε is time invariant. This is analogous to the

stationarity properties of the payoff and transition equations.. In this case, the conditional
probability of ε0|ε are characterized by a transition matrix, Π. The element πij of this matrix
is defined as:

πij ≡ Prob(ε0 = εj |ε = εi)
which is just the likelihood that εj occurs in the next period, given that εi occurs today. Thus
this transition matrix is used to compute the transition probabilities in (13). Throughout we
assume that πij ∈ (0, 1) and

P
j πij = 1 for each i. With this structure:

Theorem 3 If σ(s, s0, ε) is real-valued, continuous, concave and bounded, 0 < β < 1 and
the constraint set is compact and convex, then:

1. there exists a unique value function V (s, ε) that solves (13)

2. there exists a stationary policy function, φ(s, ε).

Proof: As in the proof of Theorem 2, this is a direct application of Blackwell’s Theorem.
That is, with β < 1, discounting holds. Likewise, monotonicity is immediate as in the
discussion above. See also the proof of Proposition 2 in Bertsekas [1976, Chp. 6].

6 References
Bellman, R. Dynamic Programming, Princeton, N.J.: Princeton University Press, 1957.
Bertsekas, D. Dynamic Programming and Stochastic Control, New York: Academic

Press, 1976.

17 As noted earlier, this structure is stronger than necessary but accords with the approach we will take in our
empirical implementation. The results reported in Bertsekas [1976] require thatΨ is countable.

18

Ljungqvist, L. and T. Sargent, Recursive Macroeconomic Theory, Cambridge, Mass:
MIT Press, 2000.
Sargent, T. Dynamic Macroeconomic Theory, Cambridge, Mass.:Harvard University

Press: 1987.
Stokey, N. and R. Lucas, Recursive Methods in Economic Dynamics, Cambridge, Mass.:

Harvard University Press, 1989.

19

