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ABSTRACT 

Optimal feedback-control laws generally cannot be obtained in closed form for stochastic 
control problems. The characterizations which have been obtained for several simplified 
problems have provided valuable insight into the properties of optimal feedback-control laws 
as well as providing guidance for the construction of suboptimal control laws. In this paper 
an analytical and computer simulated parameter-sensitivity study is presented for the optimal 
feedback-control law and dynamic-programming optimality equations associated with a 
discrete-time, finite-horizon, linear-quadratic control problem with random state coefficients. 
One interesting characteristic revealed by analysis is the existence of simple linear relation- 
ships between parameter sensitivities for the optimal feedback-control selections and for the 
corresponding cost-to-go expressions. 

1. INTRODUCTION 

For most stochastic control problems the optimal feedback-control law 
cannot be obtained in closed form. Nevertheless, the optimal feedback-control 
law has been characterized for several simple problems, and these characteriza- 
tions have provided valuable insight into the properties of optimal feedback- 
control laws as well as providing guidance for the construction of suboptimal 
control laws. (See Refs. [ 1]-38].) 

The purpose of this paper is to present a parameter-sensitivity study for the 
optimal feedback-control law and dynamic-programming optimality equations 
associated with a discrete-time linear-quadratic control problem with random 
state coefficients. Previous parameter sensitivity studies for linear-quadratic 
control problems (e.g., [9-l 1 J) have generally focused either on infinite-horizon 
problems, with special emphasis given to optimal stationary control policies, or 
on essentially one- or two-period problems. The latter category includes studies 
such as [l l] which use an N-period model but analyze only the control 
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selections for the final one or two periods. A distinctive feature of the present 
parameter-sensitivity study is its focus on the N-period case, with arbitrary 
finite N. Both analytical and computer-simulation studies are carried out to 
test the sensitivity of state, control, single-period cost, and cost-to-go trajecto- 
ries to changes in time horizon, state-equation parameters, cost-function 
parameters, and mean and variance values for the random state coefficients. 
These parameter sensitivity results are used in Ref. [12] to clarify the optimal- 
ity properties of a recently proposed adaptive control technique, direct criter- 
ion-function updating. 

One interesting characteristic revealed by analysis is the existence of simple 
linear relationships between parameter sensitivities for the optimal feedback- 
control selections @P’(x) and also for the corresponding cost-to-go terms 
7’,‘,(x). [See (39) and (40) in Sec. 3.1 A second analytical finding is the sign 
determinateness of all parameter sensitivities on the basis of the signs of the 
parameters and current state, with one exception: changes in control intensity 
with respect to changes in the gain. (See Table 1, Sec. 3.) Finally, it was 
previously observed by Athans et al. [13] that limiting optimal controllers can 
fail to exist if parameter uncertainties exceed certain threshholds. Since the 
discussion by Athans et al. is somewhat heuristic, a simple proof is provided 
for the model at hand (a special case of the Athans et al. model) demonstrating 
the nonexistence of the limiting optimal controller when the state-coefficient 
standard deviation takes values greater or equal to 1.0 (Theorem 6, Sec. 3). 

An important characteristic illustrated by simultions is the extreme skew- 
ness of the sample cost distribution when the state-coefficient standard devia- 
tion takes values greater than 1.0. This finding supports the contention of 
several previous researchers [ 14-16) that exclusive reliance on the standard 
quadratic (expected mean squared error) measure for cost associated with state 
and control trajectory deviations can sometimes mask large trajectory fluctua- 
tions which occur with small but significant probability. (Their recommenda- 
tion is to examine more closely the entire probability distribution governing 
costs rather than focusing on the single distribution parameter; expectation.) 

The organization of the paper is as follows. The basic control problem is 
outlined in Sec. 2. Analytical parameter sensitivity results are established in 
Sec. 3. Computer-simulation results are presented and discussed in Sec. 4. 
Concluding comments are given in Sec. 5. 

2. THE BASIC CONTROL PROBLEM 

Consider a first-order dynamical system described by the equations 

x,=xf (initial conditions), 
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where x, E R is the state, b E R is a known nonzero constant, 0, E R is the 
control, and the state coefficient w, E R is drawn from a probability distribu- 
tion p : 9+[0, l] defined over the a-algebra 9 consisting of alI Bore1 subsets of 
R. The set lZ of admissable feedback control laws for the system (1) consists of 
all vectors fJ=(@,(*), . . . , S,(e)) of functions 0, : R+R. The control objective for 
the system (1) is assumed to be the minimization of expected total cost 

via selection of an admissable feedback control law 8 E l?, where 

(3) 

for known constants c >O and q 2 0. 

Letting E[ *] denote expectation with respect to (R, S,p), and lettingp” : p 
+[O, 1] denote the product probability distribution for coefficient sequences 

(0 i, . . . ,wN) generated in the usual way from (R, S,p), a control law 
(f3pPt( a), . . . ,O$Pt( e)) E !Z minimizes expected total cost (2) subject to the con- 
straints (1) if and only if the following dynamic-programming optimality 
equations hold pN-a.s. (see [ 1, Chapter II]): 

= E [ W(o,8,oP’(x,),X,)+ T,+,“f(w,en”P’(Xn),Xn)l, lsnsN-1. 

(4) 

In the following two sections a parameter-sensitivity study will be carried 
out for the optimal feedback control law (epPt(.),...,0,5.!i”(.)) and cost-to-go 
functions T.( .) using both analytical and computer-simulation techniques. 

3. PARAMETER SENSITIVITIES: ANALYTICAL RESULTS 

The first two theorems below establish the basic structural properties of the 
optimal feedback-control law and cost-to-go functions. The results of Theorem 
1 are well known, and a proof is presented only for completeness. 
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~,“P’(x)= - _- ( [Ew]cb[ 1 c u(n + l>J 

i 

x 

C+t-t)(R+1)]4-q ’ 

when? 

u(N+ l)=O, 

and 

=c[ Var(o)+(hj2( $$--)]x’. 
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hence 

q?l(X) = - ( IE4c41+ u(n)1 
cb2[ 1+ u(n)]+ q 1 

x, 

and 

T,_,(x)=c[lfu(n)] Ew2- 

[ 

(Ew]2cbz[ 1+ u(n)] 

cf?[l+u(n)]+q 1 x2 

q 
Cb2[ 1+ u(n)] + q 11 

X2 

= cu(n - 1)x? 

Thus Eqs. (5) and (6) hold for all n E (1,. . . , N}. Q.E.D. 

THEOREM 2. Let the terms u(l), . . . ,u( N + 1) be defined by (7). Then 

o(n)~u(n+I)~Ofor~~lf~~{l,...,N). 

Proof. Clearly u(N)=Var(w)+(Eo)‘q/[~b~+ q] 2 u(N+ l)=O. Suppose it 

has been shown that u(n) 2 u(n + I) 20 for some n E {2,. . . , N}. Then, letting 

D(k)=c62[l+u(k)]+q>0, kE{n,n+l}, 

u(n-1)-u(n) 

-[l+u(n)] Var(o)+w 
[ I 

-[I +u(n+ I)] Var(o)+ ~~~{~) 
1 1 

=Var(w)[u(n)-u(n+l)]+ 
(D(n+1)[1+u(n)]-D(n)(l-tu(n+1)]}(Ew)2q 

D(n)D(n+ 1) 

>o. 

Thusu(n)~u(n+I)~Oforalln~{1,..., N}. Q.E.D. 

Less obvious structural properties of the optimal feedback-control law 

(qPp’(x)), . . a, &f”(x)) and cost-to-go functions T,(x) are clarified by the param- 

eter-sensitivity table (Table 1). The meaning of, e.g., the first table entry is that 
the sign of the partial derivative au(n)/a(Ea) is given by the sign of q(Ew). 
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TABLE 1 
Parameter Sensitivities: I,< n 5 N 

Derivations for the entries in Table 1 will now be given. Proof of the 
following lemma is obtained by straightforward calculation. 

LEMMA 1. fit R‘S{&..., N ), and define B, s q/(&[ I+ o(n + I)] + q), where 
q 2 0, c > 0, b +O, and u(n + 1) is defzned by (7). Then 

Bll 
>O if q>O, 
-0 if q=O; 

WI 
ao(n+l)= 

- cb2B:/q if 
0 if 

4>0, 
q=o; 

al.qn + 1) 
aq if q>O, 

if q=O; 

aB B,’ 
II= -gb211+a(n+I)~-~cb2au(n,:1’ if q>O, 

ac 
0 if q-0; 

aB B,’ h(n+ I) 
_L= 
ab 

-q2cb[l+o(n+I))-~cb2 ab if q>O, 

0 if q=O. 

(‘4 

(‘4 

(1.3) 

(14 

(1.5) 
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THEOREM 3. Let nE{l,..., N}, and let u(n) be defined by (7). Then 

= sgn( qEo), (3.1) 

(3.2) 

=sgn([Eo]‘), (3.3) 

= VP( - q[ E4’), (3.4) 

=sgn(-qb[Eo]2), (3.5) 

=sgn(Var(o)+ q(Ew)‘). (3.6) 

Proof of (3.1). By definition of u(n), 

Wn) _ af4n + 1) 
aEw aEo 

[Var(w)+[Eo]2B,]+{2[l+u(n+l)]B,}Ew 

+[l+u(n+l)](E~)~ au(a:il) au(anEL1) 

= au(n+ 1) 
aEw [ 

Var(w)+(Eo)2B,+[l+u(n+l)](E~)2au~~~l) 1 
+{2[l+u(n+l)]B,,)Ew. (8) 

If q=O, then by (1.1) of Lemma 1, 

Wn) _ Wn + 1) 
aEw aEw Var(w)* 

Since u(N+ l)=O, it follows by backward induction on n that 

Wn) -0 -- 
aEw 

if q=O. (9) 
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au(n) _ %n + 1) 
aEw aEo [ 

Var(w) + (Ew)‘B, - cb2]l +u(fi + l)l(Ew)2B2 
” 

4 I 

+ {2[1 +u(n+ l)]B,}Eo 

= ““gw ‘) [ Var(w) + (Ew)‘B,2] 

+{2[1+c(n+l)]B,}Ew. (10) 

Using (1.1) the coefficient of au(n + l)/aEo in (10) is nonnegative, and using 
Theorem 2 and (1.1) the coefficient of Ew in (10) is positive. Since u(N+ 1)~ 

0, 

=w(Ew) if q>O. 

It then follows by backward induction on n that 

if q >O. 

(11) 

(12) 

Combining (9) and (12), (3.1) is proved. 

Proof of (3.2). Suppose q = 0. Then 

au(n) 
aVar(w) 

= [ 1 + o(n + l)] + !$Er;j: [Var(w)]. 

Since u(N+l)-0 and u(k) 20 for kE{l,...,N}, it follows by backward 

inducation on n that 

sG( ,a;HJ;~))=sgq+ 1) if q-0. 
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Suppose q > 0. Then, using (1.2), 

a”(n) =[l+u(n+l)]+ ~$~r~~~ [Var(w)+(Ew)2B,] 
a Var(w) 

+v+~(~+‘w~)2 
[ 

aB” &)(n + 1) 
&)(n+‘) av.qoj 

I 

=[l+u(n+l;l]+ y;nar;j; 
[ 

Var(o) + ( Eu)~ B,, 

+ [’ + o(n+ ‘)l(W2 $nB; ‘) 1 
=[l+u(n+l)]+ ~$~r~~~ [Var(w)+(Ew)2Bi]. (13) 

By (1.1) the second bracketed term in (13) is nonnegative. Since u(N + 1) ~0, 
%(N)/aVar(o) >O. Thus (3.2) also follows easily for q >O by backward 
induction on n. 

Proof of (3.3). By definition of u(n), 

au(n) _ wn + 1) 
a4 

aq [Var(w)+(Ew)2B~]+[l+u(~+l)](Bti)2!$. (14) 

By (1. I), the coefficient of au(n + l)/aq in (14) is nonnegative. If q = 0, then by 
(1.3) and Theorem 2 the sign of the last expression in (14) is given by the sign 
of (Ew)~. Since o(N-t- l)=O, (3.3) then follows by backward induction on n. 

Suppose q > 0. Using (14) and (1.3), 

~=au(~:1)[Var(o)+(Ew)2B~]+[l+u(a+l)]2(B~)2(B~)2$. (15) 

Using (‘.I), the coefficient of au(n + l)/aq in (15) is nonnegative, and the sign 
of the last expression in (15) is given by the sign of (Eo)~. Since u(N + 1) -0, 
(3.3) follows by backward induction on n. 

Proof of (3.4). By definition of u(n), 

~=au(~~1)[Var(w)+(Ew)2B~]+]l+u(n+l)](B~)2~. (16) 
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If q =O, then by (1.4) the final expression in (16) vanishes. Since u(N+ l)rO, it 
follows by backward induction on n that au(n)/% =O. 

Suppose q > 0. Then, using (1.4), 

au(n) _ au(n+ 1) 
ac 

ac [Var(o)+(Ew)‘B,Z]-62[l+u~~+l)]‘(~~~z~. (17) 

By (1.1) the coefficient of au(nf l)/& in (17) is nonnegative; and the final 
expression in (17) has the sign of -(Ew)*. Since u(N+ 1)=-O, (3.4) follows by 
backward induction on n. 

Proof of (3.5). By definition of u(n), 

au(n) _ wn + 1) 
ab 

ab [Var(w)+(E~)2B.]+[1+u(n+l)](E~)2~. (18) 

If q = 0, then by (1.5) the final expression in (18) vanishes. Since u( N + 1) ~0, 
(3.5) follows by backward induction on n. 

Suppose q > 0. Then, using (1.5), 

au(n) _ aucn + 1) 
ab 

ab [Var(o)+(Ew)‘~~]-2[1+u(n+1)]“(Ew)’cb~.(19) 

By (1.1) the coefficient of au(n + l)/ab in (19) is nonnegative; and the sign of 
the final term in (19) is given by the sign of - b(Ew)2. Since u(N+ l)rO, (3.5) 
follows by backward induction on n. 

Proof of (3.6). By definition of u(n), 

“(‘) =[Var(o)+(Ew)2B,]+[1+u(n+1)](Ew)2 au:fil). (20) 
au(n + 1) 

If q -0, then by (1.1) and (1.2) the sign of (20) is given by the sign of Var(w). 
Suppose q > 0. Then, using (1.2), 

au(n) 
au(n + 1) 

= Var(o) + (Ew)‘B,“. (21) 

By (1.1) the sign of (21) is given by the sign of Var(w) + (Ew)Z. Combining both 
cases q = 0 and q > 0, (3.6) is proved. Q.E.D. 
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THEOREM 4. L.et 7’,,(x) be defined 6~ (6). Then 

= sgn([ Ew12x2), 

sgn( v)=sgn([Var(w)+q(Eu)2]x2), 

sgn( Z&Q) =sgn( - qb[ Ew]2x2). 

111 

(44 

(4.2) 

(4-3) 

P-4) 

(4.5) 

Proof. By definition, 

T,(x)= cu(n)x2, c >o. (22) 

Thus (4.1), (4.2), (4.3), and (4.5) follow immediately from Theorem 3. To prove 
(4.4), it suffices to establish that 

where Bk is as defined in Lemma f and 

Sk = Var(w) + (Eu)‘Bz, 1skkNN, (25) 

for sgn( u(n)) = sgn(Var(o)) if q = 0, and sgn( Sk) = sgn(Var(w) + (,!?a)? for q > 0, 

1 5 k 5 N, using (1.1). 

By the definition (22) for T,(x), 

wdx) _ 
[ 

auP9 2 

ac 
u(n)+cac x . 

I 

(26) 
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If q=O, then by (3.4) the expression a”(n)/ac in (26) vanishes, establishing 
(23). Suppose q > 0. By (17), for arbitrary k E ( 1,. . . , N ), 

“(k)+rq=[I+“(k+ 1)][Var(o)+(Ewf2&] 

+c a”(k+f) 

1 ac 
S~-b2[I+“(k+I)J2(E~)2~ 1 

=[l+u(k+l)]S~+ca”(~c+?S~ 

l+u(k+ l)+c-r 
a”(k+l) s 1 k. 

Since u(N + l)rO, it follows by backward recursion that 

(27) 

Equations (26) and (28) establish (24). Q.E.D. 

LEMMA 2. L.er u(l), . . . , u(N+l)bede$nedby(7). ThenforeachnE{l,...,N}, 

a”(n) 
CT= -q 

au(n) b au(n) 
-=2-e a4 (2.1) 

u(n) - 4 y= ygi mJoSm+. 20 for q>O, 

[ I 
(2.2) 

where the terms S,, 1 5 k 2 N, are defined by (25). 

Proof. The assertion (2.1) is obvious from Theorem 3 when q -0. Suppose 
q>O. Using (15) and (17), with u(N+l)=O, 

_ _ q WN > ; 
ac 

hence (2.1) holds for n = N. Suppose (2.1) holds for some n = k + 1 E (2,. . . , N). 
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Then, using (15) and (17) again, 

Wk) 
C--z-“C 

av(k+ 1) 
aC 

&-[l+v(k+l)f(Eo)~ 

au(k) 
=-4-s a4 

Finally, using (17) and (19) with v(N+ l>=O, 

b au(N) --=-- B,$(Eu)‘cb2 
2 ab 4 

NOW suppose this equality holds for some k + 1 E (2,. . . , N}. Then, using (17) 
and ( 19) again, 

s~_2B;(E~)2cb[l+v(k+l)] 
4 

=C 
av(k + 1) 

ac 
s, _ B;(Ew)“cb2[ I+ v(k + I)] 

4 

av(k+l)_[l+v(k+l)J@o)2B;b2 
ac 4 

Thus (2.1) holds for all n E { 1 ,, . ., N}. Equation (2.2) then follows from (2.1), 
(28), the definition of the terms S,, and (1.1). Q.E.D. 
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THEOREM 5. Let 8,oP(x) be defined by (5). Then 

sgn( p)=s,(- bx), 

=sgn( - qb[Ew]x), 

sgn( yp)=sgn((Ew]bx), 

sgn( F)=sgn(- qb[Ew]x), 

Proof of (5.1). By Eq. (5), 

a6py.q x _m--- 
aEo b 

if q=O, 

proving (5.1) for q = 0. Suppose q > 0. Then 

atpy q PZ - 
cb[lfo(n+l)]B,,x 

aE0 4 

(E4cb a& n 
a4n+l) B x 

=- 
51 

(E~)cb[l+u(n+I)l 
au(n+ 1) 

aEw x I 

4 

= -cb[l+u(n+l)]f$ 

_ ik(n+ 1) (Eo)cbB,‘x 
aE# 4 * 

(5*1) 

(5.2) 

P-3) 

(5.4) 

(5.5) 

(5.6) 

(2% 
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sp( q+sgn(-bx), 

as asserted. 

Proof of (5.2). Clearly &?~~l(+)[a Var(u) 30 if g-0. Suppose q >O. Then, 
defining D ,= cb2[ I+ u( n + l)] + q > 0, 

= at@ + f) 
- c2b311 + Nn+ WW avar(w) 
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sgn *+u(n+l)-4au(~~1))=sgn(+l); 
( 

hence 

as asserted. 

Proof of (5.4). Clearly ~B,“p’(.x)/~c==O if q=O. Suppose q>O. Letting 
D~&(l -ku(n+ l)]+q>o, 

W,op’(X) 
-=-D (Eu)b[l+v(n+l)]+(Eo)cb ( av(n+l) x 

ac & 
1 i?i 

By (28), Eq. (32) can be restated as 

where the terms Sk, 1 ,< k 5 N, are defined by (25). By (I.I), Sk ,> 0, 
I <k <N. Thus = zz 

sgn( p)=s,n(-,[Eo]bx), 

as asserted. 



PARAMETER-SENSITIVITY STUDY 117 

Proof of (5.5). Defining D zcb*[l + u(n + l)]+ q >O, 

(Eo)c[l+u(n+l)J+[Ew]cb 

+ %(&)cb[l+u(n+ l)]$ 

=_Dau(n+l) 
ab 

cb(Ew)$ 

Suppose cb2 2 q. Since by assumption c >O, b#O, and q 2 0, and u(n + 1) > 0 

by Theorem 2, either cb*[l+u(n+l)]=q>O or cb2[1+u(n+1)]>q 20. In 

either case, using (3.5) 

sgn( ~)=sgn([Eo]x), 

as asserted. 

Proof of (5.6). If q = 0, then clearly ClbB,OP’(x)/ab =O. Suppose q > 0, and let 

b au(n+l) 
A,Gl+u(n+l)+~ ab 

Then, by (1.5), 

ab@r’(x)=a(-(Eo)B,cb2[1+u(n+l)]x/q) 

ab ab 

= -(Ew)cb( ~b(l+u(n+l)]+2Ql,)~ 

= - 2(Eo)cbB,,A, 
cb’[l+u(n+l)]B, 

4 

By (1.1) and Lemma 2, 

1_ cb2[1+o(n+l)1Bn 
9 

=B;An >O. 
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ThUS 
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sgn( wgw) =sgn(-qb[Ew]x) 

as asserted. Q.E.D. 

The parameter sensitivities displayed in Table 1 indicate the local response 
of the optimal feedback-control law (5) and associated cost-performance 
measures (6) to changes in the basic parameters Ew, Var(w), q, c, and b. 
Analysis of the global response of the closed-loop system to changes in these 
parameters reveals the crucial role of Var(o). Specifically, no optimal control 
law exists in the limit as N+XI if Var(o) 2 1. This phenomenon appears to 

have first been noted by Athans et al. [ 131. Since their discussion is somewhat 
heuristic, a simple precise proof of this fact will be given below. 

The closed-loop system takes the form 

xn+, =u,x, + bB,Op*(x”) 

= B,,[ Ew]xn + [u, - Eo]x,,, (33) 

B,= 4 
cb2[ 1 + u(n + l)] + q * 

Thus for each n~(2,. ..,N) the variance Var(x,+,) of x,,, satisfies 

Var(x,,+ ,) = [ Var(w) + B,,?(Eu)~] Var(x,,) + Var(w) (Ex,,)~ 

2 [Var(w)]“xf. (34) 

If x, #O and Var(w) > 1, the variability of x,,+, increases without bound as 
n-cc. The following result therefore comes as no surprise. 

THEOREM 6. Consider the control problem described by (1) and (2). rf 
Var(w) > 1, then no optimal control law exists in the limit as N+co. 

Proof. By Theorem 1 the expected total cost associated with the optimal 
feedback-control law for the N-period control problem is given by 

7-,(x,) = cu( 1)x:, (35) 

where u(1) is recursively generated by the relation (7). To establish that no 
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optimal control law exists in the limit as N+oe if Var(w) > 1, it suffices to 

show that u(1) increases without bound as iV+a~ if Var(#) Il. 

By Lemma 2, the terms (u(n)):_, recursively generated by (7) satisfy 

u(n) 2 u(n+ 1) 2 u(N+ l)=O; 

and in the course of proving Lemma 2 it was shown that for n E {2,...,N}, 

u(n- l)-u(n)=Var(w)[u(n)-u(n+l)]+ 
[u(n) - u(n+ l)](Ew)*q’ 

D(n)D(n + 1) 7 (36) 

where D(k) z cb2[ 1+ u(k)] + q > 0, k E { 1 , . . . , N >. Since the final term in (36) is 
nonnegative, and u(N) 2 Var(o), it follows that for any n E {2,...,N} 

u(n - 1) -o(n) 2 [Var(ti)lN+‘-“, 

If Var(o) > 1, the distance between the monotone decreasing terms 

u(l)...., = u(N) is therefore at ieast one, with o(N) > 1. Thus u(1) increases = 
without bound as N+co. Q.E.D. 

As a final remark, we note the following interesting parameter sensitivity 
relations for the optimal-control and cost-to-go terms B,“p’(x) and T,,(x). By 
Lemma I and (2.1) it is easily verified that 

(37) 

bfpyx) = (Eu)[ E” - 11x. (38) 

Combining (37) and (38), 

atyq x) 
C-” - 

qaf9y(x) 1 abfpyx) 
-=- 

oc aq 2 ab . 

Moreover, it directly follows from (6) and (2.1) that 

c2 ac- w) aTn(x) b 3r,(x) 
ac =-q-G-=- 2--%-’ 

(39) 

w9 
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4. PARAMETER SENSITIVITIES: SIMULATION RESULTS 

Computer simulations were carried out on an IBM 370/158 for the control 
problem described in Sec. 2 in order to test the sensitivity of the state, control, 
single-period cost, and cost-to-go trajectories to changes in the time horizon N, 
cost-function coefficient q, and state-coefficient mean Ew and standard devia- 
tion SD(w).’ The initial state x:, control coefficient b, and cost-function 
coefficient c were held constant at value 1 throughout all simulations. State- 
coefficient “observations” w,, were generated using a pseudo-random-number 

generator for normal deviates N(Ew, SD(w)). 
Examples of two complete simulation runs are presented in Tables 2 and 3 

below. The principal table entries x,,, B,“p’(x,,), If+,,, @p’(x,,), x,), and T,(x,,) 
represent averages over 50 trial runs. The u-values are the corresponding 
sample standard deviations. The final column of each table gives the sample 

TABLE 2 
State, Control, Single-Period Cost, and Cost-to-Go Trajectoriesa 

Period n 

X” ~?‘(%) wo,, f?,oYX”), X”) T,(x,) E,W - 
0 0 0 0 SD n (4 

1 1.ooo 

0.0 
2 - 0.079 

1.022 
3 - 0.029 

0.940 
4 - 0.234 

1.154 
5 0.034 

0.893 
6 -0.103 

0.890 
7 - 0.034 

1.137 
8 - 0.092 

1.240 
9 0. IO8 

0.725 
10 0.075 

0.869 
II - 0.056 

1.109 

- I .953 4.866 45.623 
0.000 1.597 0.000 
0.154 4.869 42.794 
1.990 7.602 65.025 
0.057 4.711 31.674 
1.823 14.329 72.279 
0.452 5.953 42.883 
2.225 31.658 237.050 

- 0.065 3.725 20.813 
1.708 16.436 88.091 
0.194 4.165 17.058 
I .683 22.533 91.145 
0.064 5.993 21.300 
2.108 33.820 118.512 
0.165 5.499 18.185 
2.210 31.988 106.846 

-0.173 2.135 3.867 
1.160 12.318 22.555 

- 0.075 1.993 2.282 
0.869 9.579 12.979 

0.0 
0.0 
1.874 
1.022 
1.988 
1.008 
1.971 
0.986 
2.028 
I.009 
1.992 
1.006 
2.018 
0.996 
1.987 
0.996 
1.981 
0.997 
2.003 
0.986 

Total realized costs: 43.859. 
BParameter values: N= 10, q= 1, Ew=2, SD(w)= 1.0. 

‘Programs are available upon request. 
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TABLE 3 
State, Control, Single-Period Cost, and Cost&Go Trajectories’ 

Period X, 
n 0 

1 1.000 
0.0 

2 -0.188 
1.533 

3 -0.068 
2.108 

4 - 0.799 
3.719 

5 0.172 
4.478 

6 - 0.876 
7.531 

7 - 0.466 
13.514 

8 -0.401 
20.258 

9 3.042 
20.982 

10 2.799 
30.882 

11 - 2.497 
36.128 

~,“p”(x”) 
a 

-2.am 
0.000 
0.376 
3.065 
0.135 
4.211 
1.595 
7.424 

- 0.342 
8.916 
1.735 

14.909 
0.910 

26.387 
2.639 

38.157 
-5.111 
35.250 

- 2.799 
30.882 

(I (I 

6.385 13,161.813 
3.646 0.000 

13.984 13,952.324 
22.935 2L318.672 
32.225 1 L541.711 

112.598 26,326.754 
77.739 16,655.5 16 

404.923 91,114.375 
137.094 14216.230 
672.724 46,699.887 
408.129 12,838.313 

2247.859 70,~8.688 
1109.455 17645.297 
6222.OUO 98,319.375 
1912.439 16,558.527 
1070.383 93,933.375 
2230.196 6,820.063 
3856.977 42,153.W 
2274.022 4,086.502 

967.527 25,619.145 

0.0 
0.0 
1.811 
1.533 
1.982 
1.512 
1.957 
1,479 
2.042 
1.514 
1.988 
1.509 
2.028 
1,494 
1.981 
1.494 
1.972 
1.495 
2.005 
1.479 

.__ ~~~ ~ 

Total realized costs: 8201.664. 
“Parameter values: N= IO, q= 1, h-2, SD(w)= 1.5. 

means E,o and sample standard deviations SD,(w) for the generated pseudo 
random numbers q, . . . , on_ ,, 2 < n < N, averaged over fifty trial runs. 

Since the standard deviation gD(oJ for the state coefficient w is deliberately 
being set at values for which the closed-loop system is unstable, it is not 
surprising that sample standard deviations are large. The sample dist~butions 
become increasingly thick-tailed as SD(w) is increased above 1.0. To illustrate 
this phenomenon, sample distributions for the (averaged) total realized costs 
appearing in Tables 2 and 3 are displayed in Fig. 1. 

A second characteristic illustrated in Tables 2 and 3 is the tremendous 
sensitivity of the single-period cost and cost-to-go trajectories to changes in the 
standard deviation SD(o). As SD(o) varies from I.0 to IS, total realized costs 
increase by a factor on the order of l@. Moreover, single-period costs are 
monotone increasing for SD(u)= 1.5, whereas they are obviously damping to 
zero for SD(o) = 1 .O. 

Since presumably a controller views total realized costs as a key aspect of 
the control process, this summary characteristic is displayed below in Table 4 
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Fig. 1. Sample distributions for total realized costs over fifty trial runs. (a) Parameter values: 
N- 10, q- 1, Eo=2, SD(w)= 1.0; sample mean: 43.859. (b) Parameter values: N= IO, q= 1, 
Ew-2, SD(w)= 1.5; sample mean: 8201.664. 

TABLE 4 
Total Realized Costsa 

q=o q=l 

N SW4 Ew=O, I, 2 Ew=O Eo=l Ew=2 

10 1 9.116 9.116 16.966 43.859 
1.5 2,366.137 2,366.137 3JI49.684 8,201.664 

50 I 6.038 6.038 13.166 34.429 
1.5 2,35 1,999.OOO 2,35 I,999.000 4,700,150.000 11,745,118.ooO 

100 1 2.996 2.996 6.911 18.833 
1.5 83,622.125 83,622.125 167,244.875 418,116.688 

WI table entries represent averages over 50 trial runs. 

for simulations using the following parameter values: 

N (time horizon): 10, 50, 100 
q (cost coefficient): 0, 1 
Ew (state-coefficient mean): 0, 1, 2 
SD(w) (state-coefficient standard deviation): 1.0, 1.5 
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The skewness of the total cost sample distributions should of course be kept in 
mind when interpreting these results. 

Several uniformities are evident in Table 4. First, total realized costs are 
independent of the state-coefficient mean Ew when q = 0; and secondly, total 
realized costs are independent of q when Ew=O. Recalling Eq. (5) for the 

optima1 control law, single-period costs take the form 

W(q,,&‘P’(x,),x,,) = (co,, - Eo)‘x; 

when q = 0, where o,, - EL+--N(O, SD(w)). Similarly, 

obtains 
for all values of q one 

when Ew = 0, where w,- N(O,SD(o)). Thus the two uniformities mentioned 
above can be expected to hold, approximately, regardless of other parameter 
values. The exactness of the uniformities is a result of the random-number 
generator, which generates N( Ew, SD(o)) deviates from N(0, SD(o)) deviates 
by simply adding the desired mean. 

A more significant uniformity in Table 4 is the dramatic deterioration of 
optimal-control-law cost performance when the standard deviation SD(w) 
increases from 1.0 to 1.5, regardless of other parameter values. In contrast, 
total realized costs increase rather gradually along rows, as q and Ew increase. 
In addition, when SD(w)= 1, total realized costs monotonically decrease as the 
time horizon N increases from 10 to 100, for all values of q and Ea. In 

contrast, when SD(w)= 1.5, total realized costs increase by a factor of ap- 
proximately 1@ as the time horizon N increases from 10 to 50, and decrease by 
a factor of approximately & as N increases from 50 to 100. 

Table 5 focuses on what appear to be the two key parameters affecting cost 
performance, the time horizon N and standard deviation SD(w), enlarging the 
range considered for each. Somewhat surprisingly, Table 5 indicates that total 
realized costs are approximately independent of the time horizon N when the 

TABLE 5 
Total Realized Costs? q = 1, Ew = 2.0 

IO 40 70 100 

0.05 4.832 4.839 4.777 4.807 
I.0 43.859 22.384 44.664 18.833 
1.5 8201.664 648,379.250 14,095,970.000 418,116.688 

‘All table entries represent averages over 50 trial runs. 
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TABLE 6 
First Zero State or Final State? q = 1, Eo = 2.0 

N 
SW4 10 40 70 100 

0.5 x9=0 x,=0 x13=0 xg=o 

I.0 XII= - 0.056 Xz.3’0 x,,=o x23=0 
1.5 x,,= -2.691 x41 = -0.017 x,, = - 5.054 x,=0 

BAll table entries represent averages over 50 trial runs. 

state-coefficient standard deviation SD(w) has value OS. For the remaining two 
standard-deviation values, 1 .O and 1 S, cost performance deteriorates at N = 70, 
significantly so for SD(w)= 1.5. In particular, what appears in Table 4 to be a 
monotonic relationship between realized costs and the time horizon N for 
SD(w) = 1 .O now appears to be more accurately described as a cyclic relation- 
ship. Clearly, many more simulation runs are needed in order to fully under- 
stand the dependence of total realized costs on the time horizon N. 

In the final table (Table 6), a second summary characteristic is displayed: 
the first zero state for each averaged simulation run, if such a state value exists, 
or the final state value otherwise. Recalling Eq. (5) for the optimal control law 
and the definition (3) for single-period costs, it is clear that 

x,=0 * &‘r’(x,,)=O and W(o,,,~,OP’(x,),x,,)=O. 

Thus Table 6 gives some indication of the shape of the state, control, and 
single-period cost trajectories. 

5. CONCLUSION 

A detailed parameter-sensitivity study has been carried out for a discrete- 
time, finite-horizon, linear-quadratic control problem with random state coef- 
ficients. Both analytical and computer simulation studies are used to examine 
the sensitivity of state, control, single-period cost, and cost-to-go trajectories to 
changes in the time horizon N, the state equation parameters [Eo,Var(w),6], 
and the cost-function parameters [c,q]. 

One interesting characteristic revealed by analysis is the existence of simple 
linear relationships between the (b, c, q)-parameter sensitivities for the optimal 
feedback control selections and for the corresponding cost-to-go expressions. 
A second interesting characteristic derived analytically is the sign determinate- 
ness of parameter sensitivities solely on the basis of the signs of the parameters 
and current state in all but one case. the change in control intensity with 
respect to the gain coefficient 6. 

An important characteristic revealed by simulations is the extreme skewness 
of the sample cost distributions when the state-coefficient standard deviation 
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SD(w) takes values greater than 1.0, regardless of other parameter values. Not 
surprisingly in view of the observations by Athans et al. [ 131 (see also Theorem 
6, Sec. 3), there is a corresponding dramatic deterioration in average cost 
performance. What remains to be explained is why, for each fixed N, the 
deterioration in average cost performance as SD(w) varies from 0.5 to 1.5 is 
significantly more noticeable for the middle-range time horizons N=40 and 
N=70 than for either the short time horizon N = 10 or the long time horizon 
N= 100. 

~~~~i comments by the tmocitzte editor and two ~~0~~~~ referees are 
great@ appreciated. 
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