JOURNAL OF
Economic

Dynamics
Journal of Economic Dynamics & Control & Control

e
ELSEVIER 23 (1999) 1487-1516

www.elsevier.nl/locate/econbase

Time series properties of an artificial
stock market

Blake LeBaron®?*, W. Brian Arthur®, Richard Palmer®

*Graduate School of International Economics and Finance, Brandeis University, 415 South Street,
Mailstop 021, Waltham, MA 02453-2728, USA
5Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
°Dept. of Physics, Box 90305, Duke University, Durham, NC 27708, USA

Accepted 20 November 1998

Abstract

This paper presents results from an experimental computer simulated stock market. In
this market artificial intelligence algorithms take on the role of traders. They make
predictions about the future, and buy and sell stock as indicated by their expectations of
future risk and return. Prices are set endogenously to clear the market. Time series from
this market are analyzed from the standpoint of well-known empirical features in real
markets. The simulated market is able to replicate several of these phenomenon, includ-
ing fundamental and technical predictability, volatility persistence, and leptokurtosis.
Moreover, agent behavior is shown to be consistent with these features, in that
they condition on the variables that are found to be significant in the time series tests.
Agents are also able to collectively learn a homogeneous rational expectations equilib-
rium for certain parameters giving both time series and individual forecast values
consistent with the equilibrium parameter values. © 1999 Elsevier Science B.V. All
rights reserved.
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1. Introduction

The picture of financial markets as groups of interacting agents, continually
adapting to new information, and updating their models of the world seems like
a very appealing and accurate picture of how real markets operate. However,
trying to construct theoretical frameworks for markets can become extremely
complicated. The state space quickly explodes as beliefs of all agents become
relevant, and solutions become difficult when individual beliefs and decisions
depend on those of others. Recently, Arthur et al. (1997) have presented a com-
putational platform for analyzing such a market. This paper extends their
results, concentrating on the time series features of these artificial markets.

The behavior of traders in this simulated market draws heavily on the
literature on convergence to rational expectations under a mispecified learning
dynamic.! We follow the tradition of assuming that the out of equilibrium
learning process would be extremely complex to set up as the result of an
expectational equilibrium. Moreover, the complexity of the situation forces
agents to act inductively, using simple rules of thumb, in their attempts at
optimization. These rules are not static, and are continuously reevaluated and
updated according to their performance. No agent will continue to use subopti-
mal rules when better ones have been discovered.

We make two strong deviations from the earlier research in this area. First, we
are not interested simply in equilibrium selection, and convergence properties
alone. We are interested in the behavior of the learning and adapting market
per se. Most of the reason for this is that we have situations in which the market
never really settles down to anything that we could specifically characterize as
an equilibrium. Our second major contribution is that we add variable selection
to the agent’s forecasting problem. They not only update linear prediction
models, they must also make some selection as to what information is relevant
for their forecasts. They are faced with a large set of information from which to
make forecasts, of which only a small part might be relevant. They must decide
empirically which series to use. This is a continuation of Sargent’s (1993)
recommendation for building little econometricians into models. It just moves
the level of complexity one step closer to reality.

The use of multiagent models for financial markets is driven by a series of
empirical puzzles which are still hard to explain using traditional representative

1A good example of this approach is Bray (1982) which is part of the large body of work on
bounded rationality introduced by Simon (1969), and recently summarized in Conlisk (1996) and
Sargent (1993). There are also connections to the large literature on heterogeneous information
rational expectations surveyed in Admati (1991), and with many of the important early papers in
Grossman (1989). However, in the experiments performed here differences across agents are due only
to differences in interpretation of common public information.
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agent structures. Among these puzzles are issues of time series predictability
using both technical and fundamental information.> Other important features
include volatility persistence, and the equity premium puzzle.® Although some
theoretical explanations have been provided for a few of these facts, most of the
explanations still remain controversial, and a general theory for all these
features remains out of reach.

The literature on building artificial financial markets using computer ex-
periments is steadily growing and new markets are appearing all the time.*
Paralleling the computer work have been several new analytic approaches to
heterogeneity. They view the market as made up of populations of different
strategy types, usually including technical, fundamental, and rational traders.?
These analytic papers complement the computer work in many ways. They are
able to address some of the same issues, in a tighter analytic framework, but they
are slightly restricted in agents’ forecasting rules need to be specified ahead of time.

There is some connection between the results here, and the work on learning
in sunspot equilibria such as Evans (1989), and Woodford (1990). The artificial
markets in this paper often end up with agents conditioning on variables that
should be of no value, but become valuable since others are paying attention to
them too. This is similar to the support for a sunspot under a learning dynamic.
However, it should be cautioned that sunspot models deal with stable equilibria
in which extraneous variables have value. Often the artificial markets do not
appear to be converging to anything that looks as stable as a traditional
sunspot. It is also the case that emergence of variables as important pieces of
forecast information will be endogenous. Traders will be shown certain pieces of
information, but they are not encouraged to use them. Therefore, their coordina-
tion on these variables itself is an interesting dynamic of the market. A related

2See Campbell and Shiller (1988a), Campbell and Shiller (1988b) for some of the early work on
predictability. Also, Campbell et al. (1996) and Fama (1991) provide good surveys of this large
research area. The area of technical forecasting, or using past prices alone to forecast future prices
has seen a recent resurgence. Papers by Brock et al. (1992), LeBaron (1998), Levich and Thomas
(1993), Sweeney (1988), Sweeney (1986), and Taylor (1992) have reopened the question of the
usefulness of simple technical trading rules. Taylor and Allen (1992) show that a majority of traders
in foreign exchange markets admit to using techical indicators.

3See Bollerslev et al. (1990) for a survey of the evidence on volatility persistence in financial
markets, and Kocherlakota (1996) for a summary of work on the equity premium puzzle.

+Several of these include Arifovic (1996), Lettau (1997), de la Maza and Yuret (1995), Margarita
and Beltratti (1993), Marengo and Tordjman (1995), Rieck (1994), Routledge (1994), Steiglitz et al.
(1996), and Youssefmir and Huberman (1997). LeBaron (1999) gives a survey of some of this
literature.

S Examples of this are in Brock and Hommes (1998), Brock and LeBaron (1996), Chiarella (1992),

Day and Huang (1990), De Grauwe et al. (1993), Frankel and Froot (1988), Gennotte and Leland
(1990), Lux (1998), and Zeeman (1974).
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equilibrium concept is Kurz’s (1994) rational beliefs equilibrium. In a rational
beliefs equilibrium, agents again concentrate on the empirical consistency of their
forecasting models. Models are only rejected if they are inconsistent with observed
time series. This allows many more possible equilibria to occur, and Kurz and
Beltratti (1995) have used this idea to help explain the equity premium.

Another related modeling area is ‘behavioral finance’, or ‘noise trader’ models
such as De Long et al. (1990). In these settings some set of traders make decisions
which are less than perfectly rational, and more importantly, drive up volatility,
and force prices down inducing rational agents to hold the risky asset. In our
model there is a similar empirical feature in that prices fall, and agents’ estimated
volatilities rise above the rational expectations benchmark values. However, this
result is reached through a very different route from the classic noise trader
approach. Traders are bounded in their information processing abilities, but
subject to these constraints they do not believe they are making systematic
mistakes. Also, there is no division of the traders into a specific noise trader
group. While some traders may behave in such a way as to increase volatility,
they do it because they evolved these behavioral patterns. Persistent psychologi-
cal biases are interesting in finance and economics, but they are not part of
this model.®

Section 2 presents the market structure, and details the computerized trading
agents. Section 3 gives the empirical results from the computer experiments, and
Section 4 concludes and discusses the future for this line of research.

2. Market structure
2.1. Tradable assets

The market structure is set up to be as simple as possible in terms of its
economic components. It also attempts to use ingredients from existing models
wherever possible.

There are two assets traded. First, there is a risk free bond, paying a constant
interest rate, r; = 0.10, in infinite supply. The second asset is a risky stock,
paying a stochastic dividend which is assumed to follow the following auto-
regressive process,

di=d+pld,—y — d) + p, (1)

with d = 10, and p = 0.95, and g, ~ N(0, o7). This process is aimed at providing
a large amount of persistence in the dividend process without getting close to

% Also, see Thaler (1992) for further examples of biases in economic decision making.
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nonstationary dividend processes. The total shares of the stock are set to 25, the
number of agents who will be trading. The price of a share of stock, p,, is
determined endogenously in the market.

2.2. Preferences

There are 25 agents, who are assumed to be myopic 1 period constant
absolute risk aversion (CARA) investors maximizing an expected utility function
of the following form:

Ei(— e b)
subject to
Wiii = xipiv1 + div1) + (14 r)(Wi — pxi). (3)

The notation E! indicates the best forecast of agent i at time t. It is not the
conditional expectation, but agents i’s perceived expectation. If stock prices and
dividends were gaussian then it is well known that the share demand for these
preferences is given by

i E:(pt+1 +div) — (1 +rep

t A2
Y0p+d.i

A (4)

where 67,4, is agents i’s forecast of the conditional variance of p + d. This
relation only holds under gaussianeity of stock prices. This will hold in the linear
rational expectations equilibrium given below, but outside of this it is not clear
what the distribution of stock prices will be. In these cases the demand function
should be taken as given, but the connection to a CARA utility maximizer is
broken.

Given agents are identical with the same coefficient of absolute risk aversion,
7, then it is easy to solve for a homogeneous linear rational expectations
equilibrium (REE) by conjecturing a linear function mapping the current state
into a price,

pe=fd, +e. (5)

Plugging this into the demand for shares and forcing each agent to optimally
hold one share at all times gives

_ p
U ©
o d(f+ 1)1 —p) — Wiw' (7)

I'e
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Table 1

Parameter values

Parameter Simulation value
y 0.5

d 10

I 0.10

0 0.95

op 0.07429

Y 4.00

f 6.3333

e 16.6880

1= p)A +d +e) 4.5011

a range [0.7,1.2]

b range [ —10.0,19.0]

Given this direct connection between the price and the dividend, and the
dividend dynamics, it is an easy task to find optimal forecasts in the homogene-
ous rational expectations equilibrium. One form of these is

E(pi+1 +div 1) = plp, + d) + (1 — p)((1 —{—f)c?—{— e). (®)

This forecasting equation is one of the crucial things that agents will be
estimating, and it will often be referred to with the following parameters:

E(le +d+1) = alp, + dy) + b. )

This equilibrium will be used as a benchmark for many of the experiments. It
will be interesting to see how close the agents parameters come to these, and if the
time series properties in some of the simulated markets are close to what we would
expect in the converged market. For easy reference the simulation parameters are
summarized in Table 1. The allowable ranges for a and b are given in the lines
labeled, ‘a range’ and ‘b range’ which are centered around their REE values.

2.3. Forecasting

The goal of the artificial agents is to build forecasts of the future price and
dividend which they will use in their demand functions above. They do this by
maintaining a list of several hypothesis, or candidate forecasting rules. These
rules may apply at all times, or in certain specific states of the world.” They are

7In many ways this is very close to behavioral rules of thumb such as those considered in
Cochrane (1989) or Campbell and Mankiw (1989). One important difference here is that the rules of
thumb will change over time if better rules can be found. In other words while there is not explicit
optimization, learning and improvement is allowed.
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monitored for forecast accuracy, and only the best rules will be used in forecast-
ing. After several trading periods have gone by these rules are grouped together,
and the worst performing rules will be eliminated, and new ones are added using
a genetic algorithm which tries to take useful pieces of good rules and build them
into even better rules.

Each agent contains a table of 100 of their own rules mapping states into
forecasts. These rules govern behavior while the agent is trading through their
forecast of future prices and dividends. The rules are modified in a learning
process that occurs at a lower frequency than trading. There is no interaction
among the agents’ rule books. In other words, there is no role here for imitative
behavior. Reactions to other agents’ behavior only occurs directly through
prices.

Agents build forecasts using what are called ‘condition-forecast’ rules. This is
a modification of Holland’s ‘condition-action’ classifier system.® The basic idea
is that the rules will match certain states of the world which are defined
endogenously. These states map into a forecast for the future price and dividend
which is then converted to share demand through the agent’s demand function.’

The classifier rules will be used to match binary conditions in the market
which requires predefining a set of binary states that can be used for forecasting.
This limits our agents to forecasts built on the state variables we give them, and
creates a kind of focal point. However, the classifiers allow agents to ignore any
of these state variables. The set of states includes both ‘technical’ and ‘funda-
mental’ information. The fundamental information will be based on dividend
price ratios, and the technical information will use moving average types
of trading rules. The states are summarized in a binary state vector 12 bits
long. Each element corresponds to whether the conditions in Table 2 are true or
false.

The choice of these bits is arbitrary, but some tests for robustness have been
performed. Removing small sets of the bits do not change the results. However,
making big changes to this list of information will cause big changes. For

8 The structure of classifier systems is developed in Holland et al. (1986). An example of another
use in economics is Marimon et al. (1990). There has been some controversy about whether
classifiers are able to solve dynamic optimization problems. This is stated most clearly in Lettau and
Uhlig (1997), who show that they often fail to find dynamic solutions. Since this market consists only
of myopic traders, the debate over dynamic optimization is not relevant here.

9 Holland’s ‘condition-action’ classifiers map directly into actions. This could be done here too,
but this would force the payoffs, or strengths of the different rules to be based on how much payoff is
generated for the agent, either direct, or utility based. This would cause an unfair competition
between rules that are good for good states of the world, and rules that are good for bad states of the
world. Only the former would survive. The forecasting rules will be based on forecast accuracy which
lessens this problem a little.



1494 B. LeBaron et al. | Journal of Economic Dynamics & Control 23 (1999) 1487-1516

Table 2
Condition bits

Bit Condition
1 Price * interest/dividend > 1/4
2 Price * interest/dividend > 1/2
3 Price * interest/dividend > 3/4
4 Price * interest/dividend > 7/8
5 Price # interest/dividend > 1
6 Price * interest/dividend > 9/8
7 Price > 5-period MA
8 Price > 10-period MA
9 Price > 100-period MA

10 Price > 500-period MA

11 On: 1

12 Off: 0

example, removing 3 out of the 4 technical trading bits can have a big impact,
but removing only one will not change things. The cutoff points for the
dividend/price ratios were determined by examining the region in which the
price was moving for many different runs. It was desired to have good coverage
over the range of observed prices. This coverage does mean that the tails will be
visited infrequently. The extreme events at 1/4 and 9/8 are visited with probabil-
ities less than 0.01. The moving average values are lengths that are commonly
used by traders, but these should be viewed with some caution since the time
horizon has not been calibrated. At this time they can be taken as values which
cover a wide range of persistence in the price series.

Classifier rules contain two parts. The first is a bit string matching the state
vector, and the second is a forecast connected with that condition. The bit string
part of the classifier contains 12 positions corresponding to the states, and each
contains one of three elements, a 1,0, or a #. The 1 and 0 match corresponding
bits in the state vector, while the # symbol is a wildcard symbol matching
either. A shorter example rule is given in Table 3 along with the bit strings that it
would match. The wildcard character is a crucial part of the classifier system for
experiments of this kind, since it allows agents to dynamically decide which
pieces of information are relevant, and to completely ignore others. These are
critical to the kinds of information selection issues discussed in the introduction.

The second part of the rule table helps convert the matched set of bits into
a price-dividend forecast. Forecasts are built as linear functions of current prices
and dividends. For each matched bit string there is a corresponding real valued
vector of length three corresponding to linear forecast parameters, and a condi-
tional variance estimate. Let this vector be given by (a;,b;, 67). This is mapped
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Table 3
Matching examples

Rule Matches

(L #.,1, #.,0)

into the expectation formation as follows:

Et(pt+1 +dt+1):aj(pt +dt) +bj> (10)

6ria=03. (11)
Comparing Eq. (10) with Eq. (8) shows that the linear REE is in the set of things
that the agent can learn. In this case all the bits from Table 2 are irrelevant since
expected p + d will be a linear function of current p + d.

The parameters a and b are initially set to random values distributed uniform-
ly about the REE equilibrium forecast values. For each rule they then remain
fixed for the rest of the life of that forecasting rule. New values are set through
evolutionary procedures described in later sections.'®

2.4. Trading

Once each agent has settled on a rule, they then substitute the forecast
parameters into their demand for shares. For agent i the demand for shares
would look like,

Ei(pt+1 +divq) — (1 +1o)p,

A2
))Gp+d

xXi(po) = , (12)

a; jp. +dy) + b j — (1 + re)p,
767 '

xf(pt) =

197t would be possible to easily estimate these parameters using ordinary least squares (OLS),
since the eventual forecast criteria will be based on squared error, and once the difficult problem of
what should go on the right-hand side of the regression has been determined by the bitstrings. In
order to keep the learning mechanism consistent across both the real and bitstring components of
the rules it was decided that the real parts should be ‘learned’ in the same way as the bit strings
through the genetic algorithm.
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Now it is a trivial exercise for an auctioneer to find a price which clears the
market by balancing the demand to the fixed supply of shares.!!

. N oa d b;;—(1
X;(pt) — Z al,./(pt + I) + i,j ( + rf)pt

~2
1 i=1 Y0i.;

g

= N. (14)

1

At the end of trading agents update the accuracy of all the matched fore-
casting rules according to an exponentially weighted average of squared
forecast error,

1 1
Vtz,i,j =(1—-- Vz271,i,j +=((p; +d) — (@i fpi—1 +di—1) + bi,j))2~ (15)
T T

For the experiments in this paper 7 is fixed at 75. Also, the squared error inputs
into the above estimate are not allowed to exceed 500. This bound is almost
never reached after the first few periods have gone by.'?

Fixing 7 at 75 is a crucial design question. The value of 7 determines the
horizon length that the agent considers relevant for forecasting purposes. It does
this in a smooth exponentially weighted fashion, but it does set an arbitrary
cutoff on information. If agents used all past data, then they would be making
the implicit assumption that the world they live in is stationary. On the other
hand if 7 = 1, then the rules use only the last periods forecast error, and are
essentially evaluated based on noise. The value of 7 is critical since it is one of the
two important economic variables related to learning, and speeds of measure-
ment and adjustment. A complete study of the changes in dynamics related to
7 is beyond the scope of this paper, but a few robustness checks were performed
on the results presented in the next section. Values from 7 = 25 to 7 = 250 do
not greatly affect the results. However, values outside this range may give
different outcomes. In the future it will be desirable to allow agents to adjust this
parameter endogenously.

Trades are subject to some limitations. First, agents are restricted to trading
a maximum of 10 shares each period. Also, they must stay inside a budget
constraint. Their budgets are set up so that the constraints are not binding in
most cases. Finally, there is a short sale restriction of 5 shares. This means that
no one agent can go short more than 5 shares which would be 1/5 of the entire
market. All of these conditions appear to only be binding in the early stages of

"1 This is not a perfect expectational equilibrium since the rule used is not conditioned on the
current price information. Doing this causes the demand function to be a complicated nonlinear
function for which the equilibrium price would be hard to find.

12 The current estimated volatility, vtz,,-.j, is kept track of for each rule, but it is not used to update

the variance estimate, o7, until the rules are updated with a genetic algorithm. This is described in
Section 2.5.
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the market, when agents’ random initial conditions set up very unstable strat-
egies for a short time.

2.5. Learning and rule evolution

The rules described so far describe a static rule set without learning. The agent
is allowed to learn and change behavior by altering this set of rules. This
adaptation is designed to eliminate poorly performing rules, and to add new
ones through the use of a genetic algorithm (GA).!* The genetic algorithm is
designed to combine old rules into new, novel hypotheses, which will then be
allowed to compete with the existing population of forecasting rules.

On average, the GA is implemented every k periods for each of the agents,
asynchronously, so that learning does not occur for all agents in certain periods.
k will be the one crucial parameter that is allowed to change across the
experimental runs.

Rules are selected for rejection and persistence into future generations based
on a strength measure. First, the variance estimate is updated to the current
active variance for all rules.'*

af =} G (16)
Then the strength of each rule is given by
sj= — (0} +cB), (17)

where B; is the number of bits not equal to # in a rule, and c is a cost per bit
which is set equal to 0.005 for all experiments. The purpose of this bit cost is to
make sure that each bit is actually serving a useful purpose in terms of
a forecasting rule. If the market was in the linear REE, then as long as the linear
forecasting parameters were correct all rules should have the same forecast
accuracy. The bit cost gives a gentle nudge in this situation to the all # rule. It
also biases the results slightly toward the REE, but as we will see this bias is not
enough in some cases.

Learning occurs by removing old rules, and generating new ones to replace
them. Specifically, the 20 worst rules are eliminated out of 100, and 20 new rules
are generated to replace them. New rules are generated through one of two
procedures, crossover and mutation.’> In crossover new rules are generated by

13 The genetic algorithm was originally developed by Holland (1992). Goldberg (1989) provides
a useful introduction, and Mitchell (1996) provides a good overview of the literature. Further
references to work on general evolutionary optimization procedures can be found in Béck (1996) and
Fogel (1995).

14Tn many of these cases the i subscript for the agent is left out to keep the notation simpler.

15 Crossover occurs with probability 0.1, and mutation with probability 0.9.
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first choosing two fit parents from the population of existing rules. This is done
using tournament selection. For each rule needed, two are chosen, and the
strongest of these two will be used. After two parents have been selected, they are
‘crossed’. Crossing tries to combine useful parts of each parent. A method called
uniform crossover is used on the bitstring component of the parent. The new
child’s bit string is built one bit at a time, choosing a bit from each parent in the
corresponding position with equal probability. Crossing the real part of each
rule (a, b) is a little more difficult, and there is very little experience in doing this
in the GA community. We have decided to use one of three different methods
chosen at random. First, all the real values are chosen from one parent chosen at
random. Second, a real value is chosen from each parent with equal probability.
Third, the new values are created from a weighted average of the two parents
values, using 1/57 as the weight for each each rule. The weights are normalized
to sum to 1. In mutation, one parent is chosen using tournament selection. Then
bits are flipped at random.'® The real valued components (a, b) have random
numbers added to them.!” Mutation is an important part of the exploration
process in a GA, and helps to maintain a diverse population. Rules inherit the
average forecast accuracy, o7, of their two parents unless the parents have not
been matched. In this case they receive the median forecast error over all rules.

2.6. Other details

There are several other details which are important to the functioning of the
market, but which are not in the basic agent design structure. Each agent
maintains a default rule that will be matched in any situation.'® The real-valued
parameters (a, b) are set to a weighted average of the values for each of the other
rules. The weighting is determined by 1/67 for each rule.

The GA rule generation procedure is capable of generating rules that will
never be matched. For example, a rule could appear in which it is required that
the dividend price ratio be greater than 1, and less than 1/2. Obviously, such
a rule is useless, and will never be used. Rules that have not been matched for
4000 periods have 1/4 of their bits (1’s or 0’s) set to #, and their strength is reset
to the median value. This procedure is known as generalization, and is an
important part of keeping stagnant rules out of the rule book.

16 With probability 0.03 each bit in the string undergoes the following changes. 0 — # with
probability 2/3. 1 — # with probability 2/3. # — 0 with probability 1/3. Other changes are as
expected, i.e. 0 — 1 with probability 1/3. On average this preserves the ‘specificity’, or fraction of #’s,
of a rule.

17With probability 0.2 they are changed to a value chosen randomly from their allowable ranges,
given in Table 1, using a uniform distribution. With probability 0.2 they are changed a small amount
chosen uniformly over the range + — 0.05% times the allowable range.

18 The bitstring is constrained to be all #.
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When multiple rules are matched, the tie is broken using the active variance
estimate, v7; ;. This is done for several reasons. First, it keeps bad rules from ever
being used. Second, it delinks the tie breaking mechanism from the denominator
estimate in the share demand equation. Otherwise, this would generate a lot of
bias toward larger share holdings because of the selection of lower variance
rules. There is already some of this present since the variance values are closely
linked.

At startup the rules are initialized randomly. The bitstrings are set to # with
probability 0.9, and 1 or 0, with probabilities of 0.05 each. The real values (a;, b;)
are set to random values in the allowable range (Table 1), and the variance
estimates ¢; are set to the variance estimate in the rational expectations
equilibrium, aﬁﬂl = 4. Each agent is then allocated 1 share of stock, and 20,000
units of cash.

3. Experiments
3.1. Experimental design

The experiments performed will concentrate on the time series behavior of the
simulated price series in several different situations. The objective is to show that
for some parameter values the price series are indistinguishable from what
should be produced in a homogeneous rational expectations equilibrium. For
other parameters convergence does not occur, and the market generates inter-
esting features which appear to replicate some of those found in real financial
time series. Also, a few experiments will be performed to check if the agents
could learn the rational expectations equilbrium if that was the data they were
actually seeing. In these cases the theoretical price series is given to the agents
without any trade taking place. This is somewhat like learning from a teacher,
and will be referred to as the REE example case. It performs a quick reality
check to make sure the agents could learn the REE if they happened to find
themselves in it.

The crucial parameter for controlling the behavior of the market is the
frequency of learning. All other parameters will remain fixed. We will experi-
ment with two frequencies, k = 250, where the agents learn on average once
every 250 time periods, and k = 1000, where they learn on average once every
1000 time periods. These will be referred to as fast learning and slow learning,
respectively.

3.2. Time series features

To generate time series experiments, the market was run for 250,000 time
periods to allow sufficient learning, and for early transients to die out. Then time
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Fig. 1. Price series. Starting period = 250,000, soild line = actual price, dotted line = theoretical,
bottom line = difference.

series were recorded for the next 10,000 time periods. This was done for a cross
section of 25 separate runs each started at different random starting values.
Fig. 1 displays a snapshot of one of these runs for the fast learning, k = 250, case.
The actual price series is compared with the theoretical value from Eq. (5).

It is interesting to think about what these price series would look like if it were
converging close to the REE. Since there is stochastic learning going on, the
price would always have an extra amount of variability relative to the REE
benchmark, and it is difficult to estimate how much this would be. From Eq. (7)
it is clear that increased price variability alone will just lower the price by
a constant amount. To compare the actual results with this, the difference
between the actual and theoretical prices is plotted. This series shows a pattern
of periods in which it does not look too far off a constant difference, and periods
in which is fluctuates wildly. This phenomenon appears as a common feature for
many of the runs, with the price looking close to the REE for a while, and then
breaking away, and doing something else for a short period of time. In other
words, the market is not inefficient all the time, but it goes through some phases
where the theoretical asset valuation rules are not followed very closely.

These pictures are only representative of what is going on. The next tables
present some statistical tests on the time series from the market. Under the null
hypothesis of a linear homogeneous REE, price and dividend should be a linear
function of their lags. This is clear from the dividend process, Eq. (1), and the
linear dividend to price mapping in Eq. (5). To check this, the market price and
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Table 4
Residual summary statistics

Description Fast learning Slow learning
Std. 2.147 2.135
(0.017) (0.008)
Excess kurtosis 0.320 0.072
(0.020) (0.012)
P1 0.007 0.036
(0.004) (0.002)
ARCH(1) 36.98 3.159
[1.00] [0.44]
oi 0.064 0.017
(0.004) (0.002)
BDS 3.11 1.28
[0.84] [0.24]
Excess return 3.062 2.891
(0.050) (0.028)
Trading volume 0.706 0.355
(0.047) (0.021)

Note: Means over 25 runs. Numbers in parenthesis are standard errors estimated using the 25 runs.
Numbers in brackets are the fraction of tests rejecting the no ARCH, or independent identically
distributed null hypothesis for the ARCH and BDS tests, respectively, at the 95% confidence level.

dividend is regressed on a lag and a constant,
Pi+1+diry=a+bp, +d) + &, (13)

and the estimated residual series &, is analyzed for structure. In the homogeneous
REE this series should be independent and identically distributed, N(0, 4). This
is done for both the fast learning, k = 250, and the slow learning series,
k = 1000.'° Results are given in Table 4.

The first row shows the standard deviation of the residuals from the two
different types of runs. The parameters were chosen so that in both cases the
theoretical value of these was 2. Both cases show a higher amount of variability
than should be there, and there is little difference between the cases. The next

19 Results for the REE example case are also performed, but in these cases the price is set to the
REE value, so the estimates are as expected.
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row shows the excess kurtosis for the two cases, which should be zero under
a Gaussian distribution. Both show a significant amount of excess kurtosis, but
it is more pronounced for the fast learning case. Qualitatively, this lines up well
with the fact that real asset returns are leptokurtotic, but it should be noted that
quantitatively, the numbers here are still smaller than those for daily asset
returns. The third row shows the autocorrelation in the residuals. This is an
important number because it shows that there is little extra linear structure
remaining. The small magnitude of this autocorrelation is comparable to the
very low autocorrelations observed in real markets. It is an important feature
that any artificial market needs to replicate. The fourth row performs a simple
test for ARCH dependence in the residuals.?’ The numbers reported are the
means of the test statistics. The numbers in brackets are the fraction of runs that
rejected ‘no ARCH” at the 95% confidence level. In the fast learning case all the
runs rejected ‘no ARCH’, while in the slow learning case this was reduced to
only 44%. A second test for volatility persistence is performed in the next row
where the first order autocorrelation of the squared residuals is estimated. The
value of 0.064 in the fast learning case, is clearly larger than the slow learning
case value of 0.017. The next row presents the BDS test for nonlinear depend-
ence. This test is sensitive to any kind of dependence in a time series, including
ARCH, and generally rejects independence for most financial time series.?! It
shows a large fraction, 84%, rejecting the null hypothesis of independence in the
fast learning case, and a much smaller fraction, 24%, rejecting in the slow
learning case. The BDS test is sensitive to many departures from independence
including ARCH, so the last group of tests may be detecting similar features.
The next row shows the mean excess returns for the two runs, which is estimated
as(p;+1 + di+1 — p)/p: — 1y The estimate is higher in the fast learning case with
a value of 3.06% as compared with 2.89% in the slow learning case.?? It is also
much larger than the value from the REE example using the linear benchmark.
In this case the mean excess return was estimated at 2.5% with a standard error
of 0.002. This gives some evidence for an increase in the equity premium in the
fast learning case over both the slow learning, and REE example. The final row
presents trading volume in shares per period averaged over the final 10,000
periods of the market. There is a large increase in volume going from the slow to
fast learning case with almost a doubling in the amount of trading activity. This
change is very strongly significant given the estimated standard errors.

20This is the test for conditional heteroskedasticity proposed by Engle (1982).

21 Brock et al. (1996) introduce and derive the BDS test, and Brock et al. (1991) give further
descriptions and examples of its use with financial variables.

22 This difference in means is significant at the 95% confidence level with a simple t-test value
of 3.0.
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Table 5
Forecasting regressions

Description Fast learning Slow learning

MA(5) 0.009 —0.008
(0.013) (0.007)

M A(500) 0.074 —0.025
(0.014) (0.015)

rP/D > 3/4 —0.443 0.050
(0.104) (0.093)

Note: Means over 25 runs. Numbers in parenthesis are standard errors estimated using the 25 runs.

In summary, the results show the fast learning case to be slightly more
leptokurtotic than the slow learning case. Also, the fast learning cases show
much stronger evidence for the presence of ARCH effects, and possibly other
nonlinearities. Both cases show little indication of autocorrelation, which is
similar to actual markets.

Table 5 looks at several aspects of predictability remaining in the time series
beyond that which should be there in the REE equilibrium. This is done by
adding extra explanatory variables to a simple linear regression of price and
dividend on lags,

Piv1+divr =a+bp +d) + clypmasoo) + &t 1- (19)

Here, an indicator variable showing whether the price is above or below a 500
period moving average is added to the regression on lagged p + d.

Row 1 of Table 5 presents the results for a regression using Eq. (19) with
a 5 period MA for both the slow and fast learning cases. The number reported is
the estimated coefficient, ¢, and the number in parenthesis is the standard error
estimated over the cross section of runs. The results show no significant extra
predictability coming from the 5 period MA. However, moving down to the next
entry in the table shows a different story. The same regression is performed here,
but this time the 500 period moving average is used as the additional informa-
tion. In this case, the coefficient is positive and significant for the fast learning
case, but insignificantly different from zero for the slow learning case. This
shows a clear distinction between the two cases in terms of technical predictabil-
ity, with the fast learning case showing evidence for some kind technical trading
predictability, and the slow learning case still looking close to the REE result of
no predictability. The last row gives a similar finding for one of the dividend
price ratio indicators. This more fundamental indicator should also be of little
use in the REE equilibrium since all the relevant information is contained in the
lagged price. The estimated coefficient is significant and negative for the fast
learning case, indicating that when prices are high relative to dividends they are
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Fig. 2. Volume autocorrelations. Fast learning mean = soild, slow learning mean = dots, IBM
daily = dashes.

expected to come down. The estimated coefficient for the slow learning case is
insignificantly different from zero. The two cases from the fast learning case, line
up with certain empirical features of real markets. The usefulness of the price
dividend ratios has been shown in many situations to be a useful predictor. Also,
technical trading rules have been found to have some predictive value as well.>?

In the next two figures the dynamic properties of the artificial market are
addressed. Specifically, correlations and cross correlations of trading volume. In
actual stock markets, trading volume series are highly persistent.?* Fig. 2 shows
the mean autocorrelations for trading volume in the two artificial market cases,
fast and slow learning, along with a comparison series from IBM daily volume
from 1962 to 1994. The IBM volume is detrended using a 100 d moving average
of past volume. It is clear that all three generate very persistent trading volume
series. However, the IBM series appears to have a much longer range depend-
ence than the artificial series. Both the fast and slow learning markets generate
similar patterns for volume persistence.

Fig. 3 shows the relation between volume and volatility. The positive contem-
poraneous correlation between them is well known Karpov (1987). The figure
shows the cross correlation pattern between volume at time ¢, and squared
returns at time t + j.2> The dashed lines are the 95% confidence bounds on the
estimated correlations using the standard error from the cross section of the

23See Campbell and Shiller (1988a) and Campbell and Shiller (1988b) for evidence on
price/dividend ratios, and see Brock et al. (1992) for some evidence on technical trading.

24 Since volume series have an upward trend this does depend on the detrending method used, but
the general persistence of volume remains relatively robust to various techniques.

25 Returns are the residuals from regression (18), &, for the artificial market data.
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Fig. 3. Crosscorrelations: squared returns and trading volume. Correlation of squared returns at
(t + j) with volume at ¢. Soild line = mean fast learning, dashes = 95% confidence intervals using
cross section, dots = IBM daily.

artificial market runs. The dotted line is the corresponding value for IBM daily
returns. The figure shows a very close correspondence between the two patterns
including a slight tendency for the volatility to lead movements in trading
volume.

3.3. Agent forecast properties

Markets with computerized traders offer several advantages over experi-
mental markets with real people. One of these is that it is possible to ask the
agents just what they are doing when the experiment is over, and they will have
to reveal truthfully the kinds of strategies they are using. In this section several
pieces of information from the individual agents will be used to show how they
have reacted to the previously reported time series averages.

Fig. 4 shows the fraction of bits set for the two different cases, slow learning,
and fast learning. Fraction of bits set refers to the fraction of bits that are not do
not care symbols, #, averaged over all the rules and agents. In other words, this
reports the fraction of rules that are conditioned on different pieces of informa-
tion. The dashed lines represent the 25/75 quantiles for the 25 runs, and the solid
line is the median. In both cases the bits appear to be settling down to levels
below 5%. However, there is some weak indication of a continuing increase in
the fast learning case.

Fig. 5 presents a similar estimate of the fraction of bits set, but now the
average is constrained to the 4 moving average technical trading bits. It shows
a much larger fraction of bits set for the fast learning case, and what appears to
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Fig. 4. Average bits set. (1) Fast learning, (2) slow learning. Median and 25/75 Quantiles: 25 runs.

Fraction of Bits Set
0.25
0.20
0.15

(1)
0.10
0.05

2

Period

Fig. 5. Technical trading bits. (1) Fast learning, (2) slow learning. Median and 25/75 Quantiles: 25
runs.
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Fig. 6. Long run experiments: technical trading bits.

be an upward trend. This shows that there are almost 4 times as many rules
conditioning on the technical trading bits in the fast learning case as there are in
the slow case. Since there is an upward trend it would be interesting to know
what happens to the technical bits further out in the future. It is too costly in
terms of computer time to run a lot of long length runs, but one was run out to
1,000,000 time steps. Fig. 6 shows the fraction of technical bits that are set in this
one long run. It is clear from this picture that the bits eventually stop their
increase, but there also appear to be large swings over time in magnitude of
technical trading behavior. There are swings from as low as 10%, to highs of
over 25%. This suggests a world in which technical trading is not a consistently
useful strategy for agents, but one in which it makes large swings through the
population over time.

The next figure, Fig. 7, repeats the experiment in Fig. 5 for one of the
fundamental bits, p > 3/4. It again shows a strong persistence in the use of
fundmental information in the fast learning case, and not in the slow learning
case. This is the same bit that was used in the regressions in Table 5 which
showed its usefulness in forecasting future price movements in the fast learning
case alone. In the homogeneous REE none of these pieces of information should
be of any use to the individual agents.

The convergence plots presented so far have been concerned with the bitstring
components, or conditioning information, part of the forecasting rules. They
have ignored the actual linear forecast parameters. The next figure looks at some
of the convergence properties of the linear forecast parameters. Fig. 8 displays
the convergence of the forecast parameter, a, which is the coefficient on lagged
(p + d) in the prediction rules. In the homogeneous REE equilibrium this has
a value of 0.95 which is marked by a thick black line. The dashed lines are again
the 25/75% quantiles. The top panel displays the fast learning case, and the
second panel, the slow learning case. Both show a slight positive bias, and are
different from the REE value. The third panel is the first result presented from
the REE example case mentioned in Section 3.1. Here agents are shown the true
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Fig. 7. Fundamental trading bit (pr,/d > 3). (1) Fast learning, (2) slow learning. Median and 25/75

Quantiles: 25 runs.
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Fig. 8. Mean Forecast Parameter a. (1) Fast learning, (2) slow learning, (3) REE example. Median

and 25/75 Quantiles: 25 runs.

REE price for each dividend. They do not trade. They just watch what the price
should be, and update their forecasts according to the usual GA updating
system. This value shows a slight downward bias that should be expected since
the least squares estimate of an AR(1) parameter would be downward biased.
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Fig. 9. Mean Variance Estimate 2. (1) Fast learning, (2) slow learning, (3) REE example. Median
and 25/75 Quantiles: 25 runs.

The bias is not disappearing asymptotically because the squared errors are
based on a down weighted rolling horizon,>® and do not extend out over all
periods. This feature shows that the rules would be capable of getting close to
what they should be in the REE, and something very different is going on in the
other cases.

Fig. 9 shows the average value of the variance estimate, a7 ;, for all rules. This
is a general volatility estimate for all agents. In the homogeneous REE equilib-
rium this value should be equal to 4 as marked by the dark line in each figure.
Once again, both simulations show a slightly upward bias in this value indicat-
ing an estimated price variability larger than the theoretical value. The REE
example case is right on target in terms of its estimated variance. This once again
shows that given the correct answer the agents are able to learn it.

Few of the estimated forecast parameter figures have shown much difference
between the fast and slow learning cases. This may seem unusual given the time
series evidence presented earlier. One reason for the similarity is that the
dispersion of these parameters has not yet been analyzed. They may have
a similar central tendency, but differing amounts of dispersion. Fig. 10 shows the
mean absolute deviation of the variance estimate. This is estimated for each
agent, and then averaged across agents, giving a sense of the dispersion in
variance estimates across different rules. In the REE these dispersions should be

26 Eq. (15).
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Fig. 10. Mean absolute deviation for variance estimate ¢2. Fast learning: solid, slow learning: dashes

zero since the conditional variance is constant. This figure shows some interest-
ing differences between the fast and slow learning cases represented by the solid,
and dashed lines respectively. Intially, the slow learning case shows more
dispersion, and falls relatively slowly. However, in the long run it falls to a point
where there is much less dispersion over the rules. It ends up with less than half
the mean absolute deviation than in the fast learning case. The slow convergence
at first is probably due to the fact the rules are getting updated more slowly. In
the long run this clearly shows that there is something different going on in the
fast learning cases.

The final figure, Fig. 11, demonstrates the distinction between individual
agent versus aggregate phenomena. An interesting fact about financial markets
is that volume and volatility are positively correlated. This is a little puzzling
given the theoretical setup of agent demands used in this paper. Given that
volatility enters into the denominator, it seems likely that when volatility is
higher actual trading volume will be lower. This is not directly obvious, but
looking at Eq. (4) it is clear that increases in estimated volatility, all things equal,
will reduce the variability in share demand from shocks to future expected prices
given current prices. Therefore, the desired reshuffling of shares will be greater
when volatility is lower. This is very close to an argument that traders get scared
when volatility is high, and do not want to change their positions much in
response to new information.

This conjecture is confirmed in Fig. 11 which plots the cross correlation of
trading volume with the average estimated volatility, the average value of 7},
over all rules and agents. This shows a strong negative contemporaneous
correlation. Since the volatility estimate is highly persistent by design, the
crosscorrelation between lagged volatility and volume is also strongly negative.
The value begins to move positive since there should be no direct connection



B. LeBaron et al. | Journal of Economic Dynamics & Control 23 (1999) 1487-1516 1511

Crosscorrelation
0.00

—0.01
-0.02 4
—-0.03
-0.04

—-0.05 +

-0.06

T T T T T T 1

T
-20 -15 -10 -5 0 5 10 15 20
i

Fig. 11. Crosscorrelation: Volume(t) and Individual Volatility(t + j).

from trading volume to future volatility estimates. This pattern appears to
confirm what one might think should be the relation between volume and
volatility at the micro level. This does not need to hold at the macro level since
this figure completely ignores the possible dispersions in volatility estimates
across agents. Volatile periods might also be ones in which the dispersion in
volatility estimates over agents is quite large, driving large amounts of trading
volume. This figure shows how the micro/macro pictures in a market can be
quite different, and thinking in terms of a representative agent can fool one in
terms of what dynamics are possible.

3.4. Result summary

The results show two distinct outcomes from the simulated market. One of
these, the slow learning case, looks very close to what should be going on in the
linear REE equilibrium. In these runs, lagged prices contain all the information
needed for forecasting, expected returns, kurtosis, and volatility persistence are
also closer to what they should be in the benchmark case. Also, agents clearly
are ignoring extraneous information that is offered to them as they should. This
is a good indication that this market structure is capable of learning the REE
under the right conditions.

In contrast, changing only one parameter alters the results dramatically.
Increasing the frequency of rule updating causes the market to change. The
market appears to not settle down to any recognizable equilibrium. In the time



1512 B. LeBaron et al. | Journal of Economic Dynamics & Control 23 (1999) 1487-1516

series we observe many features common to real markets, including weak
forecastability, volatility persistence, and higher expected returns. Correlations
between volume and volatility appear to line up with some features of individual
stock returns. Finally, the behavior of the agents themselves is consistent with
the time series, in that they endogenously form rules that build on the informa-
tion that the time series tests find useful.

It would not be all that surprising to see such a dramatic change in outcomes
if many different parameters were changed. What is surprising is that a single
parameter causes such a large change. Moreover, this is a crucial parameter in
terms of the economics behind the agent and market behavior. If agents update
their rules at longer horizons, the relative value of rules will be based on longer
horizon features of the time series. In the shorter horizon updating, it seems
more likely that agents might be able to update rules that perform well against
the current pool of other agent strategies at the current time. Given that these
strategies themselves are changing over time, at longer horizons the idiosyn-
cratic parts of individual behavior may wash out, leaving only the fundamental
economic structures which pull the agents into the REE. This logic stresses the
importance of how stationary the environment is, and how much the agents
believe in a stationary versus changing world view.?’

This sort of short term aspect to decision making has some connections to the
growing area of behavioral finance.?® Many parts of this market such as rules of
thumb, and decision making heuristics have a definite behavioral aspect, but
there are some key differences. One of the most important is that traders are
behaving optimally subject to their information representations. In many be-
havioral models there are obvious biases and mistakes that could be corrected
to improve economic welfare. Here, there are no such immediate biases, and in
this continually changing world it is not obvious that the agents might be
following the best strategies possible, given their bounded models. This does ask
two key questions. What would happen if the agents were allowed to build ever
more complicated models, and what if the speed of learning itself were put under
some kind of evolutionary dynamic? Both of these are difficult questions, which
cannot be answered in the current market structure.

4. Conclusions and future research

These results show that the artificial stock market is able to replicate certain
time series features from real markets. Among these are predictability, volatility,

27 A recent paper looking at this issue using a different framework is Benink and Bossaerts (1996).
28 See Thaler (1991) and Thaler (1992) for an overview of this large area.
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and volume relations both static and dynamic. Also, agent beliefs are consistent
with the time series world that they have constructed. In other words, they
concentrate on rules using those pieces of forecasting information which appear
significant in the time series tests, but should not be important inside a homo-
geneous linear REE. The artificial market is also capable of generating what
appears to be near equilibrium REE behavior under certain circumstances.
These important benchmarks showed that when the speed of learning was
slowed down, forcing agents to look at longer horizon features, the market
approached the REE in terms of time series, and agent rule features. This shows
not just the importance of this one parameter, but the importance of forecast
horizons in general, and events that trigger learning and rule updating.

The results presented are purely qualitative. There is no intention to try and
calibrate magnitudes to real data. Time horizons have been purposely left vague.
In future work it will be necessary both to take strong stands on what the
horizon lengths are, and quantitatively line up with actual data. Another aspect
of the empirical work, is that the market shows little ability to address questions
about excess volatility. One possible reason for this is that the rule reinforcement
system uses continuous updating. Forecasted dividends are revealed in the next
period and rule accuracy is updated. There are no long periods in which the
agents only see price information along with small hints about actual funda-
mentals as there are in real markets.

One major restriction in this market is the homogeneity of the agents. Apart
from divergences in their rule sets they are identical. This can be viewed as
a strength in terms of most of the results obtained. It is important that the time
series results were derived without having to resort to using any type of ad hoc
differences across our agents. The results are made much stronger since they
were subject to this constraint. However, in terms of future work, these are
restrictions that may be relaxed.

This computer experiment should be viewed as part of a growing area of
prototypes for research into the dynamics of markets. Being early versions, these
prototypes are probably still far from more generally accepted analytic work. As
they proceed over time this may change. One of the most important issues for
the future is simplification. It is tempting in a computer-modeling world to add
everything, and to allow model complexity to increase. The analytic world
provides bounds keeping this expansion in check because complex models
quickly become intractable. Computer simulated markets with adaptive learn-
ing agents still contain a huge number of parameters whose values are not well
understood either in terms of human behavior, or in terms of their impact on the
computer runs.>® However, more traditional models are also being forced to get

29 This parameter proliferation has caused many economists to be a little weary of the potentials
of these models (Sargent, 1993). One potential solution to this may be the added restriction of using
experimental data as guidance for the learning mechanisms used.
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more complex to keep up with the growing list of empirical financial market
puzzles. There may come a time when we are forced to choose between a very
complex representative agent situated in a world subject to a complicated
stochastic structure, versus relatively simple learning agents subject to indepen-
dent shocks.
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